
The Department of Electrical and Computer Engineering

The University of Alabama in Huntsville

CPE 435 Lab-04

IPC Using Shared Memory

Introduction

Exercise

Write the code for two distinct C processes that are not part of a parent-child relation. These will be
separate programs from separate source files. They will both attach to a shared memory region
containing a new type structure with four data types (first number, second-number, Sum and Flag).
The first process must set the values for first and second numbers, then it updates the value of flag to
1 (which means there is new data). The second process is to find the sum of these two numbers and
display the sum of the two values. It should then change the flag to zero (which means the addition
was completed). The two processes will continue running this method of exchange until the first
process sets the value of flag to -1 by user input.

Example Output

First Process Second Process

Note that the above sample programs will continue running until the user enters a -1 value for the
flag. This means that both programs will loop until the flag is set to that value. Otherwise the flag will
be used to help synchronize access to the shared memory.

Hint

Define the shared structure as follows:

struct info {
float value1, value2;
float sum;
int flag;
};
#define KEY ((key_t)(1234))
#define MSIZ sizeof(struct info)

Topics for theory:

shmget(): int shmget(key_t key, size_t size, int shmflg);

It returns the identifier of the shared memory segment associated with the value of key. Based on a
value of shmflg, either a new segment is created or identifier of already created segment

shmat(): void *shmat(int shmid, const void *shmaddr, int shmflg);

It attaches the shared memory segment identified by shmid and returns the pointer in the calling
process address space.

shmctl(): int shmctl(int shmid, int cmd, struct shmid_ds *buf);

It performs the control operation in the shared memory segment identified by shmid. The
operation is as defined by value shmid

shmdt(): int shmdt(const void *shmaddr);

This function detaches the shared memory segment identified by shmaddr

Please visit IPC_SharedMemory.pptx file page 7-12 for demo examples.

Deliverables

Lab Report
The following material in each section is expected:

1. Cover page with your name, lab number, course name, and dates
2. Theory/Background (Material or methods relevant to the lab, a few sentences on each)

a. shmget()
b. shmat()
c. shmctl()
d. shmdt()

3. Observations (Show output demonstrating the two processes can use the shared
memory correctly and will only terminate upon setting the flag to -1.)

a. Process 1 can set value1, value2, and flag
i. Setting flag to -1 by process 1 should cause both processes to

terminate
b. The second process sets sum to the sum of value1 and value2. It should

display the result.
4. Conclusion (Did your program work as expected, what can you take away from the

lab?)
5. Appendix (for source code, submit the text in a table)

The report should be submitted as a single pdf document with the source code for your
program within it.

Demonstration
Demonstration may either be in person in the lab or submitted alongside the report as an mp4
file (a recording). The following material in each section is expected:

1. Introduce yourself and give the name of the lab
2. Compile the necessary programs
3. Run and show that the programs behave as specified, discussing as necessary the

behavior of the programs observed

