
Operating System Lab

Lect-2

2

• Input and output uses the read and the write
system calls, which are accessed from C
program through functions read and write.

• For both, the first argument is a file
descriptor.

• The second argument is a character array
where the data is to go or come from.

• The third argument is the number of bytes
to be transferred.

Low Level Function Calls

3

• Syntax:

int n_read = read(int fd, char* buf, int n);

int n_written = write(int fd, char* buf, int n);

Low Level Function Calls

4

• Any number of bytes can be read or written

in one call.

– The most common value is 1, which means one

character at a time (unbuffered), and a number

like 1024 or 4096 that corresponds to a physical

block size on a peripheral device.

Low Level Function Calls

5

Example: Create a File and Write Data

#include<stdio.h>
…
int main(){ char buf[] = "Sentence to be written in file";

int handle = 0, len = strlen(buf);
handle = creat(“A.Txt", O_WRONLY | _S_IREAD | _S_IWRITE);

if(-1 == handle)

{ printf("Error Creating File\n"); exit(-1); }

if(len == write(handle, buf, len)) /* write Date to the file */

{ printf("Wrote %d Byte\n", len); }

else

{ printf("Unsuccessful in writing\n"); }

close(handle); /* close the file */
return 0;}

6

The open Function

• If we want to write data to an file, we need to
open the file in write mode, if the file exists or
create a new file. This can be done with the
open function.

• Once we have finished writing to the file, the
file is closed using the close function.

• The syntax for the open function is:
int open(char* name, int flags, int perms);

– The first argument is the name of the file.

7

The open Function

– The second argument is an int that specifies how

the file is to be opened, the values are:

• O_RDONLY open for reading only

• O_WRONLY open for writing only.

• O_RDWR open for both reading and writing

– These constants are defined in fcntl.h

– The third parameter specifies the permission of the

file.

8

Read/Write File

• For reading and writing , use the read and write function

• read/write takes 3 arguments

– From where to read or write

– A buffer variable for data

– How many bytes to write

• Each call returns a count of number of bytes transferred.

– On reading , the number of bytes may be less than the
number requested. A return value of 0 bytes implies end of
file, and –1 indicates an error of some sort

– On writing, the return value is the number of bytes written;
an error has occurred if this isn’t equal to the number
requested

9

Example (read)

#include <stdio.h>
int main()
{

char buf[10];
int fd = 0, len = 1, res = 0;
fd = open("A.Txt", O_RDONLY, 0);
if(-1 == handle)
{ printf("Error Creating File\n"); exit(-1); }

while(res = read(fd, buf, len)!= 0)
{ buf[res] = '\0'; printf("%s", buf); }
close(fd); /* close the file */
return 0;

}

10

Interprocess Communication (pipes)

• Pipe is the most traditional Unix inter-process
communication

• The pipe function creates a communication
buffer that the caller can access through the
file descriptors.

• The data written to one file descriptor and
read from the other on a first-in-first-out
basis.

11

• Pipes are typically used to communicate between
two different processes:
• Process A (parent) creates a pipe

• Process A forks twice, creating B and C.

• Each process closes the ends of the pipe it does not need.

• Process B closes downstream end

• Process C closes upstream end

• Process A closes both ends

• Processes B and C execute other programs, using exec,
where file descriptors are retained.

12

Synchronization Using Pipes

• Have finite capacity (few hundred bytes)

• This imposes loose synchronization between up and
down stream processes:

– Upstream process blocks if pipe is full

• Until downstream consumes some

– Downstream process blocks if pipe is empty

• Until upstream writes some

• If upstream closes descriptor, a downstream read
operation will return EOF (0)

13

Using Pipes

14

• Closing upstream end of pipe is essential for
1st process otherwise it will never see EOF

• A pair of wait() are there to ensure that
parent will not return before both children
have finished

15

How to Create Pipes

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

int fd[2];

if (pipe(fd) == -1)

perror("Failed to create the pipe");

16

Redirection

#include <unistd.h>

int dup2(int OldFileDes, int NewFileDes);

• takes an existing file descriptor (OldFileDes) and
duplicates it into (NewFileDes)

• Example:

fd = open("my.file“,O_RDRW)

dup2(fd,1)

17

Example

who | sort

• The shell gets the output of who connected to the upstream
end of the pipe, and the input to sort connected to the
downstream end.

• Shell uses dup2 to do the plumbing:
– dup2(old, new):
– takes an existing file descriptor (old) and duplicates it into

(new).

int p[2];
pipe(p);
dup2(p[1], 1);
/*standard output connected upstream end of pipe*/

18

Example

main() {

int fds[2];

pipe(fds);

/*child 1 duplicates downstream into stdin */

if (fork() == 0) {

dup2(fds[0], 0);

close(fds[1]);

execlp(“sort”, “sort”, 0); }

/*child 2 duplicates upstream into stdout */

else if fork() == 0) {

dup2(fds[1], 1);

close(fds[0]);

execlp(“who”, ”who”, 0); }

else{ /*parent closes both ends and wait for children*/

close(fds[0]);

close(fds[1]);

wait(0);

wait(0); }

}

19

Example

20

Pipes Characteristics

• Unidirectional

• Pipes can only be used between processes that have
a common ancestor (named pipes)

• No mechanism to authenticate

• Do not work across the network

• They are the easiest of IPC mechanisms. Simple, easy
to understand and easy to implement as well.

