

CPE 449/549
PROJECT: PORT SCAN DETECTION

OBJECTIVES

All students will complete the following:

• Use Python DPKT library to parse PCAP files from Wireshark. Alternatively, you may use the LIBPCAP
library and a C program.

• Detect port scans of various types.

Graduate students will also complete the following:

• Consider how a similar program could be written to detect port knocking.

NMAP SCAN REFERENCE FILES

Use NMAP and Wireshark to create separate PCAP files for each of the following scan types. You will use these files
to test your port scan detector program.

• TCP Syn Scan (Half-open Scan)
• TCP Connect Scan
• UDP Scan
• TCP NULL Scan
• TCP Christmas Scan

Steps:

1. Start Wireshark and begin capturing packets.
2. Start an NMAP scan.
3. Stop Wireshark capture and the NMAP scan after a sufficient number of packets have been captured (a few

thousand).
4. Save as “Wireshark/tcpdump … (*.pcap, …)”

PYTHON DPKT LIBRARY

• The Python DPKT library can be used to build network packets and to parse PCAP files.

• Reference for using DPKT for parsing PCAP files.
o https://jon.oberheide.org/blog/2008/10/15/dpkt-tutorial-2-parsing-a-pcap-file/

• DPKT Code examples are at the following link. Navigate to the “Examples” link.
o http://dpkt.readthedocs.io/en/latest/index.html

LIBPCAP

LIBPCAP is a library used to capture network transactions from a network card. It is used by Wireshark. We will
use it to capture network transactions and print information about those transactions. LIBPCAP can open a live
connection to your NIC card or can run from files. We will use both. The difference is actually trivial.

Here are some useful functions:

Function Description

https://jon.oberheide.org/blog/2008/10/15/dpkt-tutorial-2-parsing-a-pcap-file/
http://dpkt.readthedocs.io/en/latest/index.html

ECE 449/549 Project Fall 2021

2

pcap_lookupdev Returns a pointer to a string giving the name of a network device suitable for use with
pcap_open_live.

pcap_open_live Creates live connection to the network device. Returns pointer to pcap_t which is used
like a file handle.

pcap_loop Calls a call back function (the pcap handler routine) specified by the user every time a
Ethernet packet is captured.

pcap_open_offline Opens a “.pcap” file. Returns same handle as pcap_open_live.

pcap_dispatch Similar to pcap_loop. Used to process all Ethernet packets found in the open “.pcap” file.
Calls the pcap handler routine each time a Ethernet packet is found in the open file.

ntohs Converts an unsigned short integer from network byte order to host byte order. This
handles endianess so you don’t have to. If the network endianess is the same as your
host’s endianess this does nothing. If they are different this converts the number for you.

ether_ntoa Converts a Ethernet MAC address from network format (hex) to a string which looks like
your typical MAC address (eg. 01:23:45:67:89:ab). Use this to print the MAC address.

inet_ntoa Converts a network address in a struct in_addr to a dots-and-numbers format string. (eg.
192.168.1.1). Use this to print the IP address.

ECE 449/549 Project Fall 2021

3

Here are some useful structs:
Struct Description
struct ether_header Ethernet header –

struct ether_header

{

 u_int8_t ether_dhost[ETH_ALEN]; /* destination eth addr */

 u_int8_t ether_shost[ETH_ALEN]; /* source ether addr */

 u_int16_t ether_type; /* packet type ID field */

} __attribute__ ((__packed__));

ether_type tells you what is in the packet:

#define ETHERTYPE_IP 0x0800 /* IP */
#define ETHERTYPE_ARP 0x0806 /* Address resolution */
#define ETHERTYPE_IPV6 0x86dd /* IP protocol version 6 */

Available in net/ethernet.h which is included in netinet/if_ether.h.

struct ip IP header –
struct ip {

 unsigned int ip_hl:4; /* both fields are 4 bits */

 unsigned int ip_v:4;

 uint8_t ip_tos;

 uint16_t ip_len;

 uint16_t ip_id;

 uint16_t ip_off;

 uint8_t ip_ttl;

 uint8_t ip_p;

 uint16_t ip_sum;

 struct in_addr ip_src;

 struct in_addr ip_dst;

};

ip_src – source IP address

ip_dst – destination IP address

Available in netinet/ip.h.

ECE 449/549 Project Fall 2021

4

Struct Description
struct tcphdr TCP header -

struct tcphdr {

 unsigned short source;

 unsigned short dest;

 unsigned long seq;

 unsigned long ack_seq;

 # if __BYTE_ORDER == __LITTLE_ENDIAN

 unsigned short res1:4;

 unsigned short doff:4;

 unsigned short fin:1;

 unsigned short syn:1;

 unsigned short rst:1;

 unsigned short psh:1;

 unsigned short ack:1;

 unsigned short urg:1;

 unsigned short res2:2;

 # elif __BYTE_ORDER == __BIG_ENDIAN

 unsigned short doff:4;

 unsigned short res1:4;

 unsigned short res2:2;

 unsigned short urg:1;

 unsigned short ack:1;

 unsigned short psh:1;

 unsigned short rst:1;

 unsigned short syn:1;

 unsigned short fin:1;

 # endif

 unsigned short window;

 unsigned short check;

 unsigned short urg_ptr;

};

source – source port
dest – destination port
seq – sequence number

syn, ack, fin, rst, psh, urg – flags

Available in netinet/tcp.h.

ECE 449/549 Project Fall 2021

5

Struct Description
struct udphdr UDP header –

struct udphdr

{

 u_int16_t source;

 u_int16_t dest;

 u_int16_t len;

 u_int16_t check;

};

source – source port
dest – destination port
len – length

Available in netinet/udp.h.

struct icmphdr ICMP header –
struct icmphdr
{
 u_int8_t type; /* message type */
 u_int8_t code; /* type sub-code */
 u_int16_t checksum;
 union
 {
 struct
 {
 u_int16_t id;
 u_int16_t sequence;
 } echo; /* echo datagram */
 u_int32_t gateway; /* gateway address */
 struct
 {
 u_int16_t __unused;
 u_int16_t mtu;
 } frag; /* path mtu discovery */
 } un;
};

type – indicates the ICMP message type. ICMP echo request is type 8.

Available in netinet/ip_icmp.h.

pcap_t Think of this as a file handle pointing to either an open “.pcap” file or a live connection
to the NIC.

The routines pcap_loop and pcap_dispatch call a function that you define when a Ethernet packet is captured. This
function is called the handler. The handler must have the following port list:

void handler(u_char *args, const struct pcap_pkthdr *header, const u_char *packet);

ECE 449/549 Project Fall 2021

6

You define the handler and provide a reference to it when you call pcap_loop and pcap_dispatch. The packet
variable in the handler port list is a pointer to the Ethernet header and its data fields.

Remember Ethernet packets encapsulate IP packets. IP packets encapsulate ICMP, TCP or UDP packets.

In memory the packet pointer points to memory which looks like:

Address What is there?
packet Ethernet Header
packet + sizeof(Ethernet header) Ethernet Data = IP Header
packet + sizeof(Ethernet header) + size of(IP header) IP Data = TCP, UDP, or ICMP header
packet + sizeof(Ethernet header) + size of(IP header)
+ sizeof(TCP or UDP header)

Data

So you can use pointer arithmetic shown above to create pointers to the various headers. From there you can type
cast that pointer and assign it to a pointer to a struct ether_header, struct ip, struct tcphdr, or struct udphdr. From
there you can easily print out the required MAC and IP addresses and port numbers.

ECE 449/549 Project Fall 2021

7

SOURCE CODE FILE NAME REQUIREMENT

Your script or program must be named one of the following.

C Programs: <chargerID>.c

Python scripts: <chargerID>.py

Replace <ChargerID> with your Charger ID. Your Charger ID is your initials followed by 4 numeric digits and is the
prefix (before the @ symbol) of your UAH email address. Instructions to look up your Charger ID are available
here: https://www.uah.edu/oit/services/charger-id-and-password.

ADDITIONAL C PROGRAM REQUIREMENT

You code will be compiled by a script with the following shell code. C++ is not allowed. No other library locations
are allowed.

gcc -I/usr/lib -lpcap -o <chargerID>.exe <chargerID>.c

ADDITIONAL PYTHON SCRIPT REQUIREMENT

Your script should function with Python 2.7. Python 3 is not allowed.

https://www.uah.edu/oit/services/charger-id-and-password

ECE 449/549 Project Fall 2021

8

COMMAND LINE ARGUMENT REQUIREMENTS

You script should accept two command line arguments; -i <filename>
The script will open and parse <filename>.

OUTPUT REQUIREMENTS

Your code should output only the following:

Null: <number of detect Null packets in PCAP input>
XMAS: <number of detect XMAS packets in PCAP input>
UDP: <number of detect UDP packets in PCAP input>
Half-open: <number of detect Half-Open packets in PCAP input>
Connect: <number of detect Connect packets in PCAP input>

Replace the <text> with a number for each line above.

For each type of scan your code should print the number of unique ports scanned. For a given IP address the
scanner will try many individual ports (count each unique port for that unique IP address). If there are multiple IP
addresses scanned, count all the ports scanned for each IP address.

Some port scans have multiple network packets per port. Do not count each packet. For example, an open port for a
connect scan will have 3 packets (syn, syn+ack, ack). Only count that group of packets once.

REQUIREMENTS

Null Scan You program should provide the
number of detected Null scans in any
PCAP file.

nmap –sN 192.168.0.0/24

Xmas Scan You program should provide the
number of detected XMAS scans in
any PCAP file.

nmap –sX 192.168.0.0/24

UDP Scan You program should provide the
number of detected UDP scans in any
PCAP file.

nmap –sU 192.168.0.0/24

Half-Open Scan You program should provide the
number of detected Half-Open scans
in any PCAP file.

nmap –sS 192.168.0.0/24

Connect Scan You program should provide the
number of detected Connect scans in
any PCAP file. Your program should
differentiate between Connect and
Half-Open scans.

nmap –sT 192.168.0.0/24

GRADING

Item Points

ECE 449/549 Project Fall 2021

9

Input/Output Correct format: 20
Correct command line argument implementation: 20

Detect NULL Exact correct #: 10
+/- 5% of correct #: 5

Detect XMAS Exact correct #: 10
+/- 5% of correct #: 5

Detect UDP Exact correct #: 20
+/- 5% of correct #: 15

Detect Connect Scans Exact correct #: 10
+/- 5% of correct #: 10
+/- 25% of correct #: 5

Detect Half-Open Scans Exact correct #: 10
+/- 5% of correct #: 10
+/- 25% of correct #: 5

Total 80

