
1

Process Management

Slides were adopted from different sources:
•Operating System Concepts by Silberschats, Galvin, and Gagne

•Operating Systems by William Stallings

•OS course in UNC by Kevin Jeffay

2

Process Concept

• Process – a program in execution

• It is the basic active entity in an OS

• An operating system executes a variety of
programs:

– Batch system – jobs

– Time-shared systems – tasks

• process execution must progress in
sequential fashion

3

Process State

• As a process executes, it changes state

– new: The process is being created

– running: Instructions are being executed

– waiting: The process is waiting for some event to

occur

– ready: The process is waiting to be assigned to a

process

– terminated: The process has finished execution

4

Process State

5

Process Creation

• OS allocates proper resources and adds

appropriate info to the kernel data structures

• Information associated with each process:

– Process state

– Program counter

– CPU registers

– CPU scheduling information

– Memory-management information

– Accounting information

– I/O status information

6

Process Control Block (PCB)

7

Context Switch

• When CPU switches to another process

– OS saves the state of the old process

– OS loads the saved state for the new process

• Context-switch time is overhead;

system does no useful work while switching

• Time dependent on hardware support

8

CPU Switch From Process to

Process

9

Process Creation

• Parent process creates children processes,

which, in turn create other processes, forming

a tree of processes

A tree of processes on
a typical UNIX system

10

Process Creation

• Resource sharing

– Parent and children share all resources

– Children share subset of parent’s resources

– Parent and child share no resources

• Execution

– Parent and children execute concurrently

– Parent waits until children terminate

• Address space

– Child duplicate of parent (e.g. UNIX)

– Child has a program loaded into it (e.g. VMS)

11

Process Termination

• Process executes last statement and asks the operating

system to delete it (exit)

– Output data from child to parent (via wait: parent collect

child’s status and execution statistics)

– Process’ resources are deallocated by operating system

• Parent may terminate execution of children processes

(abort)

– Child has exceeded allocated resources

– Task assigned to child is no longer required

– Parent is exiting
• Operating system does not allow a child process to continue if its parent

terminates (cascading termination)

12

Process Creation in Linux/UNIX

• A new process can be created using the
system call fork()

• fork() returns two process:

– Parent (original)

– Child (new)

• fork() makes a copy of the parent
address space

• Both processes continue execution after
fork() statement

13

Process Creation

#include <unistd.h>

pid_t fork(void);// pid_t: unsigned int

#include <stdio.h>

#include <unistd.h>

int main(void)

{

 int x;

 x = 0;

 fork();

 x++;

 cout << "I am process " << getpid()

 << “ and my x is \n“ << x;

 return 0;

}

14

Process Creation !!!

• Because both may perform different tasks,

we should be able to identify them

• The return value is:

– Child’s process ID (in parent process)

– Zero (in the child process)

• Child and parent processes execute

different parts of the same program

15

• The fork() creates a child that is a duplicate of the parent process .

• Since now there are two identical processes in memory, the Hello World is
printed twice

• The child process begins from the ‘fork()’

• All the statements after the call to ‘fork()’ will be executed twice. Once by the
parent process and once by the child process

• But had there been any statements before the ‘fork()’ they would have been

only executed by the parent process alone.

main()

{

 printf(“This will be printed only once\n”);

 fork();

 fork();

 printf(“Hello World\n”);

}

Now what would

happen if we had

two calls to the

fork() function,

one below the

other, in the same

program

The ‘fork()’ System Call (continued…..)

16

• Here instead of 2 processes, 3 processes will be created . This gives a
total of 4 processes in memory: the parent , its 2 children and one
grand child

fork()

fork()

printf()

The ‘fork()’ System Call (continued…..)

Parent

fork()

printf()

printf()

printf()

fork()

printf()

printf()

printf()

Parent Child

Child Grand Child Parent Child

17

• The progression with each ‘fork()’ that is added is ‘2 raised to the power

of n’, where ‘n’ is the number of calls to fork().

• To the parent process the ‘fork()’ will return the value of the child’s PID.

Whereas in the child process the value of the PID will always be 0.

The ‘fork()’ System Call (continued…..)

18

Orphan Process

• An orphan process is one whose parent process terminates before itself i.e.

the parent is dead but the child process is still alive.

• Once a child process becomes an orphan the ‘process dispatcher’ will

immediately adopt it.

– The parent process id of the child becomes 1

– The following program will demonstrate an orphan process

main()

{

 int pid;

 pid = fork();

 if (pid = = 0)

 {

 printf(“I am the child,my process id is %d\n”,getpid());

19

 printf(“the child’s parent process id is %d\n”,getpid());

 sleep(20);

 printf(“I am the child,my process id is %d\n”,getpid());

 printf(“I am the child,parents process id is %d\n”,getpid());

}

else

{

 printf(“I am the parents,my process id is %d\n”,getpid());

 printf(“the parents parent process id is %d\n”,getpid());

}

}

Orphan Process (continued…..)

20

Zombie process

• A zombie is a child process which has terminated but its parent is not informed
about the termination.

• A zombie process is one that has terminated but has not been cleaned up yet
i.e. its entry is still retained in the process table

• The following program will demonstrate a zombie process

main ()
{
 if (fork () > 0)
 {
 printf(“parent\n”);
 sleep(50);
 }
}

 Run the program above as a background process. At the Linux
prompt, type ‘ps –el’. You will see in the ‘process table’ an entry
with a ‘Z’ for zombie in the second column.

21

A ”Sleeping Beauty” Process

 Let’s now see a sleeping beauty.

main ()

{

 sleep(50);

 printf(“Hello World”);

}

 Run this as a background process and its PID will be outputted to the

screen. Then do a ‘ps-el’ to see the ‘process table’ and go to the entry

with the PID just displayed. In the second column of this entry you

will se an ‘S’ indicating that the process is in a ‘sleep state’

22

Changing Process Context

• Use exec() system call:

– Causes the process to replace its execution

image with that of a new program.

– Looses context of the old program

• Code space, data space, stack, heap

– Retains process ID, parent, children, and

open file descriptors.

23

exec()

• Six different flavors, based on:

– Program path name (relative or absolute)

– Environment variables (inherited or explicit)

– Command line arguments (explicit or vector)

• Easiest :
– execlp(char *filename, char *arg0, char arg1,..... ,

char *argn, (char *) 0);

– e.g. execlp(“sort”, “sort”, “-n”, “foo”, 0);

24

exec() Flavors

Explicit list of arguments terminated by NULL pointer

• int execl(char *pathname, char *arg0, char arg1,..... , char

*argn, (char *) 0);

 Explicit pathname is provided

 Enviornment variables are inherited from calling process

• int execlp(char *filename, char *arg0, char arg1,..... , char
*argn, (char *) 0);

 Filename has a ‘/’ -> execl

 Filename does not have a ‘/’ -> PATH is searched

 Environment variables are inherited from calling process

• int execle(char *pathname, char *arg0, char arg1,..... , char
*argn, (char *) 0, char *envp[]);

 Explicit pathname is provided

 Environment is passed as a parameter

25

exec() Flavors

Passes the command-line arguments in an argument array
• int execv(char *pathname, char **argv,);

 Explicit pathname is provided

 Enviornment variables are inherited from calling process

• int execvp(char *filename, char **argv);

 Filename has a ‘/’ -> execl

 Filename does not have a ‘/’ -> PATH is searched

 Environment variables are inherited from calling process

• int execve(char *pathname, char **argv, char
**envp);

 Explicit pathname is provided

 Environment is passed as a parameter

26

The execl() System Call

• This function is passed three parameters, but the second parameter can be
further subdivided to reflect many parameters (It means that we can pass
some values(arguments) to the second program through the call to execl)

– The path where the file will be found

– The file name itself

– A NULL to terminate, since all the parameters are taken as one string.

 Consider the two programs below:

main()

{

 printf(“Before exec my ID is %d \n”,getpid()”);

 printf(“My parent process’s id is %d\n”,getppid());

 printf(“exec starts\n”);

 execl(“/usr/guest/ex2”,”ex2”,(char *)0);

 printf(“this will not print\n”);

}

27

 Wait don’t run the above program till you have compiled the
one below

main()
{
printf(“After the exec my process id is %d\n”,getpid());

printf(“My parent process’s id is %dn”,getppid());

printf(“exec ends\n”);
}

 Now we will run the first program.Its PID will be printed on screen.

And a call will be made to the second program,ie. ‘ex2.c’ through

the execl() function.

The execl() System Call (continued…..)

28

Basic Control (wait(),

exit())
• exit(exit_status)

– exit_status = 0 (success)

– exit_status !=0 (failure)

• wait()

– Returns

• Exit status of the child

• Process ID of child whose termination caused the
wait() to wake up.

– wait(0): waits for the child to die

29

Synchronization between parent

and child

wait(0) exit()

• Used by the
parent to wait
for the child to
die

• Used by the

child upon

completion

30

Example 2:

/* tinymenue.c*/

#include ,stdio.h.

main() {

 char *cmd[]={“who”, “ls”, “date”};

 int i;

 printf(“0=who, 1=ls, 2=date :) ;

 scanf(“%d”, &i);

 execlp(cmd[i], cmd[i], 0);

 printf(“command not found\n”); /*exec failed*/

}

- execlp() call never returns unless execlp() fails.

- If execlp() succeeds, control is transferred to the new program –

 all context within the old program is lost; there is no way back

- This limitation can be solved using the idea of fork() with child

 parent synchronization.

31

Example 3:

main() {
 char *cmd[]={“who”, “ls”, “date”};
 int i;
 while(1){
 printf(“0=who, 1=ls, 2=date :) ;
 scanf(“%d”, &i);

 if (fork() == 0) {
 execlp(cmd[i], cmd[i],0);
 printf(“command not found\n”); /*exec failed*/
 exit(1);

 }

 else {
 wait(0);
 }

 }

}

32

Example 3: (cont.)

main() {

 char *cmd[]={“who”, “ls”, “date”};

 int i;

 while(1){

 printf(“0=who, 1=ls, 2=date :) ;

 scanf(“%d”, &i);

Parent Child

 else {

 wait(0);

 }

 }

}

if (fork() == 0) {

execlp(cmd[i], cmd[i],0);

printf(“command not

found\n”); /*exec

failed*/

exit(1);

}

33

Inheritance of Process

Attributes

Attribute Inherited by child? Retained on exec?

Process ID No Yes

Static data Copied No

Stack Copied No

Heap Copied No

Code Shared No

Open file descriptors Copied Usually

Environment Yes Depends of version

Current directory Yes Yes

