Operating System Lab

Low Level Function Calls

Input and output uses the read and the write
system calls, which are accessed from C
program through functions read and write.

For both, the first argument is a file
descriptor.

The second argument Is a character array
where the data Is to go or come from.

The third argument is the number of bytes
to be transferred.

Low Level Function Calls

¢ Syntax:
Int n_read = read(int fd, char™ buf, int n);
Int n_written = write(int fd, char* buf, int n);

Low Level Function Calls

« Any number of bytes can be read or written
In one call.

— The most common value is 1, which means one
character at a time (unbuffered), and a number
like 1024 or 4096 that corresponds to a physical
block size on a peripheral device.

Example: Create a File and Write Data

#include<stdio.h>

int main(){ char buf[] = "Sentence to be written in file";
Int handle = 0, len = strlen(buf);
handle = creat(“A.Txt", O WRONLY | S IREAD| S IWRITE);

If(-1 == handle)

{ printf("Error Creating File\n"); exit(-1); }

If(len == write(handle, buf, len)) /* write Date to the file */
{ printf("Wrote %d Byte\n", len); }

else

{ printf("Unsuccessful in writing\n"); }

close(handle); /* close the file */
return 0;}

The open Function

* |f we want to write data to an file, we need to
open the file in write mode, If the file exists or
create a new file. This can be done with the

open function.
* Once we have finished writing to the file, the
file 1s closed using the close function.
* The syntax for the open function is:
Int open(char* name, int flags, int perms);
— The first argument is the name of the file.

The open Function

— The second argument is an int that specifies how
the file is to be opened, the values are:

« O_ RDONLY open for reading only
« O WRONLY open for writing only.
« O_RDWR open for both reading and writing

— These constants are defined in fcntl.h

— The third parameter specifies the permission of the
file.

Read/Write File

 For reading and writing , use the read and write function
 read/write takes 3 arguments

— From where to read or write

— A buffer variable for data

— How many bytes to write
 Each call returns a count of number of bytes transferred.

— On reading , the number of bytes may be less than the
number requested. A return value of 0 bytes implies end of
file, and —1 indicates an error of some sort

— On writing, the return value is the number of bytes written;
an error has occurred 1f this 1sn’t equal to the number
requested

Example (read)

#include <stdio.h>
Int main()

{ char buf[10];
intfd =0, len =1, res = 0;
fd = open('A.Txt", O_RDONLY, 0);
If(-1 == handle) _
{ prlntf('Error Creating File\n"); exit(-1); }

whlle(res = read(fd buf, len)!=0)

Lres =\0"; printf(*"'%s", buf); }
close(fd) /* close the file */
return O;

Interprocess Communication (pipes)

* Pipe is the most traditional Unix inter-process
communication

* The pipe function creates a communication
buffer that the caller can access through the
file descriptors.

 The data written to one file descriptor and
read from the other on a first-in-first-out
basis.

* Pipes are typically used to communicate between
two different processes:
* Process A (parent) creates a pipe
* Process A forks twice, creating B and C.
e Each process closes the ends of the pipe it does not need.
* Process B closes downstream end

* Process C closes upstream end
* Process A closes both ends

* Processes B and C execute other programs, using exec,
where file descriptors are retained.

11

Synchronization Using Pipes

e Have finite capacity (few hundred bytes)

* This imposes loose synchronization between up and
down stream processes.
— Upstream process blocks if pipe is full
e Until downstream consumes some

— Downstream process blocks if pipe is empty

e Until upstream writes some

e If upstream closes descriptor, a downstream read
operation will return EOF (0)

12

Using Pipes

(Parent process A)

]
_ pipe()
Gleaqu Drocess) I
fork(} —
|/ | (ertlng Drocess)
Close the writing fork()
end of pipe | \|
Close both Close the reading
ends of pipe end of pipe

A loop +— (pipe () T Aloop

| close(...)
closel(.) W?ltp ---------- exit()
exit) ________ wait()
Continue

or exit

* Closing upstream end of pipe is essential for
15t process otherwise it will never see EOF

e A pair of wait() are there to ensure that

parent will not return before both children
have finished

14

How to Create Pipes

#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <sys/types.h>

int f£d[2];
1f (pipe(fd) == -1)

perror ("Failed to create the pipe");

Redirection

#include <unistd.h>
int dup2(int OldFileDes, int NewFileDes) ;

* takes an existing file descriptor (OldFileDes) and
duplicates it into (NewFileDes)

) Example: | file descriptor table

standard input
standard outpit

1 standard error

fd = open("my.file",0 RDRW)
dup2 (fd / 1) file descriptor table

srarcdara r--'lf:l;”
Ly write to my . £ile

(21 standard error

16

Example

who | sort

RUt of who connected to the upstream

* The sheII gets the out
e input to sort connected to the

end of the pipe, an t
downstream end

* Shell uses dup?2 to do the plumbing:
— dup2(old, new):
— ’Eakes)an existing file descriptor (old) and duplicates it into
new).

int pl[2];
pipe (pP) ;

dup2 (p[1], 1);
/*standard output connected upstream end of pipe*/

17

Example

main () {
int fds[2];
pipe (fds) ;
/*child 1 duplicates downstream into stdin */
if (fork() == 0) {
dup2 (£ds[0], O);
close (fds[1l]);
execlp(“sort”, “sort”, 0); }
/*child 2 duplicates upstream into stdout */
else if fork() == 0) {
dup2 (f£ds[1], 1)
close(fds[0]) ;
execlp (“who”, ”“who”, 0); }
else{ /*parent closes both ends and wait for children*/
close (fds[0]) ;
close (fds[1]);
wait (0) ;
wait(0); }

(2]
=~ sort’
TN

[0]

N pipe ~
ls
.'...‘r

~10] (2]

Example

| 11)

sort
file descriptor table

(0l pipe read
(1] standard output

121 standard error

1s
file descriptor table

(01 standard input
(1] pipe write

121! standard error

19

Pipes Characteristics

Unidirectional

Pipes can only be used between processes that have
a common ancestor (named pipes)

No mechanism to authenticate
Do not work across the network

They are the easiest of IPC mechanisms. Simple, easy
to understand and easy to implement as well.

20

