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Introduction to Static Analysis
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Introduction to Static Analysis - 1

* Whatis Static Analysis?

— The methodology used when analyzing software
without actually running the program

— Requires access to the source code

* The purpose of static analysis is to identify
common types of defects that may impact
correct operation or security
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Introduction to Static Analysis - 2

 Static analysis uses various methods to accomplish
its goal including:
— Adherence to coding standards
— Data flow analysis
— Control flow analysis
— Input validation
— Error handling

* These areas can help identify coding errors that
could lead to undesirable and unsafe output
conditions

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE



Coding Standards
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Coding Standards - 1

* Historically, coding conventions have focused on improving readability
and maintainability by advocating

— Consistency of presentation
— Consistency of naming of variables, constants, functions, etc.
— Consistency of documentation
— Computational complexity: cyclomatic complexity
— Etc.
* Coding conventions have evolved into coding standards to address
defects that may manifest during operation
— Runtime issues: use of uninitialized variables
— Security issues: buffer overflow
— Safety issues: unreachable code

* Some coding standards are intended for new development only, others
may be applied to clean up legacy code

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE



Coding Standards - 2

*  Motor Industry Software Reliability Association
— MISRA C and MISRA C++ coding standards
— MISRA C goals
» Safety, security, portability, and reliability of code implemented in C (according to Wikipedia)

*  Joint Strike Fighter C++ Air Vehicle
—  JSF++AV
—  http://www.stroustrup.com/JSF-AV-rules.pdf

* High Integrity C++
—  https://www.perforce.com/blog/qac/high-integrity-cpp-hicpp

* CERT C/ CERTJAVA

—  https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
— Security-focused coding standards

MathWorks Automotive Advisory Board
— MAAB Control Algorithm Modeling Guidelines Using MATLAB, Simulink, and Stateflow

e Like programming languages themselves, these standards evolve over time
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Sample Rules - 1

MISRA C

e MISRA CRule 14.1
— There shall be no unreachable code

* MISRA CRule 14.7

— A function shall have a single point of exit at the end of the
function

* MISRACRule9.1

— All automatic variables shall have been assigned a value before
being used

e MISRA CRule 20.4
— Dynamic heap allocation shall not be used

https://pubweb.eng.utah.edu/~cs5785/slides/08.pdf
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Sample Rules - 2

MISRA C

* MISRA CRule 5.2

— ldentifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier

int total;

int foo(int total) {
return 3 * total;

https://pubweb.eng.utah.edu/~cs5785/slides/08.pdf
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Sample Rules - 3

MISRA C

* MISRA CRule 17.6

— The address of an object with automatic storage shall not be
assigned to another object that may persist after the first object
has ceased to exist

int * foo(void) ({
int x;
int *y = &x;
return y;

https://pubweb.eng.utah.edu/~cs5785/slides/08.pdf
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Sample Rules - 4

JSF++ AV

e AV Rule 1

— Any one function (or method) will contain no more than
200 logical source lines of code

(L- SLOCs).

e Rationale: Long functions tend to be complex and
therefore difficult to comprehend and test.

http://www.stroustrup.com/JSF-AV-rules.pdf
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Sample Rules - 5

JSF++ AV

* AV Rule 206 (MISRA Rule 118, Revised)

— Allocation/deallocation from/to the free store (heap) shall
not occur after initialization.

* Rationale: repeated allocation (new/malloc) and
deallocation (delete/free) from the free store/heap can
result in free store/heap fragmentation and hence non-
deterministic delays in free store/heap access.

http://www.stroustrup.com/JSF-AV-rules.pdf

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE



Static Analysis with
Open Source Programs
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Static Analysis with Open Source Programs - 1

 While LDRA is a useful tool, it is one of many
commercial products that are not free.

— Luckily there are many open source tools available as
well for the frugal developer.
e Be aware, commercial or otherwise, no one tool
will always find all of the errors in a program.

— It is advisable to develop testing plans that make use
of several different tools.
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Static Analysis with Open Source Programs - 2

 Some of the available open source static analysis
tools include:
— Cppcheck
* Has a focus on detecting undefined behavior
— Clang
* Compiler that includes a static analyzer
— Eclipse

* |DE that includes static analyzers

— including cppcheck with a plugin called cppcheclipse
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Static Analysis with Open Source Programs - 3

 We will use Cppcheck in the following example.

— The developers of Cppcheck warn that it focuses on
bugs over stylistic issues and tries to avoid false
positives.

* False positives are errors that are reported but are not
actually errors on review.
— This means it is likely to not report some of the more
guestionable bugs.
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Static Analysis with Open Source Programs - 4

 The bugs that Cppcheck focuses on include:

— Dead pointers — Null pointer

— Division by zero dereferences

— Integer overflows — Out of bounds checking

— Invalid bit shift — Invalid usage of STL
commands — Uninitialized variables

— Invalid conversions — Writing const data

— Memory management
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Lab06 — Static Analysis of ec3.cpp
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Lab06 Overview

* For Lab06, you will analyze sample code using
two different compilers and an open source
static analysis tool

e Detailed instructions for Lab06 are available
within Canvas under the Modules tab
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Lab06 — ec3.cpp Source Code

void f(int a);
bool g(int& b);
int main(int argc, char* argv[])
{
char a[10];
// Array bounds error
a[10] = 0;
// Array bounds error via loop
for(int k = 0; k <= 10; k++)
{
alk] =k;
!
// Array bounds error via loop
intm=0;
while (true)
{
a[m] = m; m++;
!
// Pointer variable p uninitialized
int* p;
*p=5;
// Null pointer dereference
int*x=0;
*x =1;
// Trigger path in function g that does not return Boolean
intc=-1;
if(glc))c=2;
elsec=3;
// Memory leak
int* g = new int;
// Memory leak
int* r = new int[4];
deleter;
return O;

// Unused function f
void f(int a)
{
a=a+1l;
// No side effect outside function

}

// Function g has one path that does not return a Boolean value
bool g(int& b)

{

if (b >0) return false;

b = 0; // Exit without returning a Boolean

}

* The source code for ec3.cpp
 Static analysis does not require compilation
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Discussion - 1

* The static analysis of code is critical during
code review to help ensure the proper
operation of the program.

— However, no single tool is guaranteed to find all
bugs existing in a program.

— Be prepared to use multiple tools to help find
bugs and still need to perform additional testing
to find them all.
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Discussion - 2

* Strict adherence to coding standards can help
avoid many bugs and errors.

* A lot of static analyzers focus on checking for
compliance with these coding standards,
while others focus on various types of bugs.
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Discussion - 3

* False positives are very common with static
analysis.

— Many tools are considered ‘noisy’ and err on the side
of caution when reporting errors.

— It is up to the developer to sort through the reported
errors and determine if they are valid or not.

* False negatives occur when a bug exists, but is
not reported.

— These are a more severe problem and more
motivation behind using multiple tools for analysis.
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Summary

e Static analysis

— Code review with access to source code that helps ensure
it is conforming to coding standards

— Tests the robustness of code to safeguard against attacks
and failure

 Commercial static analysis tools

— LDRA is one of many available to help automate code
review and standards compliance

— Help to prove to customers that product requirements
have been met

* Open source static analysis tools

— Free options for code review that are useful with larger
projects with fewer of the bells and whistles
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