AN\

THE UNIVERSITY OF
ALABAMA IN HUNTSVILLE

Lab06 - Static Analysis

Dr. David J. Coe
Software Safety and Security Engineering Lab

Electrical and Computer Engineering
Department

Sponsored by National Security Agency Grant H98230-17-1-0344

Outline

* Introduction to Static Analysis

* Coding Standards
— Sample Rules

e Static analysis with open source programs
— Using Cppcheck

* Lab06
— Static Analysis of ec3.cpp

* Discussion

* Summary

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Introduction to Static Analysis

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Introduction to Static Analysis - 1

* Whatis Static Analysis?

— The methodology used when analyzing software
without actually running the program

— Requires access to the source code

* The purpose of static analysis is to identify
common types of defects that may impact
correct operation or security

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Introduction to Static Analysis - 2

 Static analysis uses various methods to accomplish
its goal including:
— Adherence to coding standards
— Data flow analysis
— Control flow analysis
— Input validation
— Error handling

* These areas can help identify coding errors that
could lead to undesirable and unsafe output
conditions

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Coding Standards

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Coding Standards - 1

* Historically, coding conventions have focused on improving readability
and maintainability by advocating

— Consistency of presentation
— Consistency of naming of variables, constants, functions, etc.
— Consistency of documentation
— Computational complexity: cyclomatic complexity
— Etc.
* Coding conventions have evolved into coding standards to address
defects that may manifest during operation
— Runtime issues: use of uninitialized variables
— Security issues: buffer overflow
— Safety issues: unreachable code

* Some coding standards are intended for new development only, others
may be applied to clean up legacy code

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Coding Standards - 2

* Motor Industry Software Reliability Association
— MISRA C and MISRA C++ coding standards
— MISRA C goals
» Safety, security, portability, and reliability of code implemented in C (according to Wikipedia)

* Joint Strike Fighter C++ Air Vehicle
— JSF++AV
— http://www.stroustrup.com/JSF-AV-rules.pdf

* High Integrity C++
— https://www.perforce.com/blog/qac/high-integrity-cpp-hicpp

* CERT C/ CERTJAVA

— https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
— Security-focused coding standards

MathWorks Automotive Advisory Board
— MAAB Control Algorithm Modeling Guidelines Using MATLAB, Simulink, and Stateflow

e Like programming languages themselves, these standards evolve over time

Sponsored by National Security Agency Grant H98230-17-1-0344

A\

THE UNIVERSITY OF
ALABAMA IN HUNTSVILLE

http://www.stroustrup.com/JSF-AV-rules.pdf
https://www.perforce.com/blog/qac/high-integrity-cpp-hicpp
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

Sample Rules

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Sample Rules - 1

MISRA C

e MISRA CRule 14.1
— There shall be no unreachable code

* MISRA CRule 14.7

— A function shall have a single point of exit at the end of the
function

* MISRACRule9.1

— All automatic variables shall have been assigned a value before
being used

e MISRA CRule 20.4
— Dynamic heap allocation shall not be used

https://pubweb.eng.utah.edu/~cs5785/slides/08.pdf

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Sample Rules - 2

MISRA C

* MISRA CRule 5.2

— ldentifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier

int total;

int foo(int total) {
return 3 * total;

https://pubweb.eng.utah.edu/~cs5785/slides/08.pdf

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Sample Rules - 3

MISRA C

* MISRA CRule 17.6

— The address of an object with automatic storage shall not be
assigned to another object that may persist after the first object
has ceased to exist

int * foo(void) ({
int x;
int *y = &x;
return y;

https://pubweb.eng.utah.edu/~cs5785/slides/08.pdf

A\

THE UNIVERSITY OF

Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Sample Rules - 4

JSF++ AV

e AV Rule 1

— Any one function (or method) will contain no more than
200 logical source lines of code

(L- SLOCs).

e Rationale: Long functions tend to be complex and
therefore difficult to comprehend and test.

http://www.stroustrup.com/JSF-AV-rules.pdf

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Sample Rules - 5

JSF++ AV

* AV Rule 206 (MISRA Rule 118, Revised)

— Allocation/deallocation from/to the free store (heap) shall
not occur after initialization.

* Rationale: repeated allocation (new/malloc) and
deallocation (delete/free) from the free store/heap can
result in free store/heap fragmentation and hence non-
deterministic delays in free store/heap access.

http://www.stroustrup.com/JSF-AV-rules.pdf

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Static Analysis with
Open Source Programs

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Static Analysis with Open Source Programs - 1

 While LDRA is a useful tool, it is one of many
commercial products that are not free.

— Luckily there are many open source tools available as
well for the frugal developer.
e Be aware, commercial or otherwise, no one tool
will always find all of the errors in a program.

— It is advisable to develop testing plans that make use
of several different tools.

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Static Analysis with Open Source Programs - 2

 Some of the available open source static analysis
tools include:
— Cppcheck
* Has a focus on detecting undefined behavior
— Clang
* Compiler that includes a static analyzer
— Eclipse

* |DE that includes static analyzers

— including cppcheck with a plugin called cppcheclipse

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Static Analysis with Open Source Programs - 3

 We will use Cppcheck in the following example.

— The developers of Cppcheck warn that it focuses on
bugs over stylistic issues and tries to avoid false
positives.

* False positives are errors that are reported but are not
actually errors on review.
— This means it is likely to not report some of the more
guestionable bugs.

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Static Analysis with Open Source Programs - 4

 The bugs that Cppcheck focuses on include:

— Dead pointers — Null pointer

— Division by zero dereferences

— Integer overflows — Out of bounds checking

— Invalid bit shift — Invalid usage of STL
commands — Uninitialized variables

— Invalid conversions — Writing const data

— Memory management

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Lab06 — Static Analysis of ec3.cpp

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Lab06 Overview

* For Lab06, you will analyze sample code using
two different compilers and an open source
static analysis tool

e Detailed instructions for Lab06 are available
within Canvas under the Modules tab

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Lab06 — ec3.cpp Source Code

void f(int a);
bool g(int& b);
int main(int argc, char* argv[])
{
char a[10];
// Array bounds error
a[10] = 0;
// Array bounds error via loop
for(int k = 0; k <= 10; k++)
{
alk] =k;
!
// Array bounds error via loop
intm=0;
while (true)
{
a[m] = m; m++;
!
// Pointer variable p uninitialized
int* p;
*p=5;
// Null pointer dereference
int*x=0;
*x =1;
// Trigger path in function g that does not return Boolean
intc=-1;
if(glc))c=2;
elsec=3;
// Memory leak
int* g = new int;
// Memory leak
int* r = new int[4];
deleter;
return O;

// Unused function f
void f(int a)
{
a=a+1l;
// No side effect outside function

}

// Function g has one path that does not return a Boolean value
bool g(int& b)

{

if (b >0) return false;

b = 0; // Exit without returning a Boolean

}

* The source code for ec3.cpp
 Static analysis does not require compilation

A\

THE UNIVERSITY OF

Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Discussion - 1

* The static analysis of code is critical during
code review to help ensure the proper
operation of the program.

— However, no single tool is guaranteed to find all
bugs existing in a program.

— Be prepared to use multiple tools to help find
bugs and still need to perform additional testing
to find them all.

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Discussion - 2

* Strict adherence to coding standards can help
avoid many bugs and errors.

* A lot of static analyzers focus on checking for
compliance with these coding standards,
while others focus on various types of bugs.

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Discussion - 3

* False positives are very common with static
analysis.

— Many tools are considered ‘noisy’ and err on the side
of caution when reporting errors.

— It is up to the developer to sort through the reported
errors and determine if they are valid or not.

* False negatives occur when a bug exists, but is
not reported.

— These are a more severe problem and more
motivation behind using multiple tools for analysis.

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Summary

e Static analysis

— Code review with access to source code that helps ensure
it is conforming to coding standards

— Tests the robustness of code to safeguard against attacks
and failure

 Commercial static analysis tools

— LDRA is one of many available to help automate code
review and standards compliance

— Help to prove to customers that product requirements
have been met

* Open source static analysis tools

— Free options for code review that are useful with larger
projects with fewer of the bells and whistles

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

