Don’t Rush Ahead in Lab05

* The fuzzing tool can make a mess of your
Linux account if you are not careful

* Follow the instructions provided as written
unless directed otherwise by the instructor

AN\

THE UNIVERSITY OF
ALABAMA IN HUNTSVILLE

CPE 455/555
Secure Software Development
Lab05 — Fuzzing with AFL

Dr. David J. Coe
Software Safety and Security Engineering Lab

Electrical and Computer Engineering
Department

Sponsored by National Security Agency Grant H98230-17-1-0344

Outline

* Introduction to Fuzzing

* Fuzzing with AFL

— Example #1: Simple Example — Crashy
— Quiz-Lab05
— Example #2: Common Utility — SQLite (Demo)

e Discussion
* Summary

e References

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Introduction to Fuzzing

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Introduction to Fuzzing - 1

* What is Fuzzing?

— At its core, Fuzzin
program by supp
the program cras

g is a technique for testing a
ving ‘random’ inputs and seeing if
nes or hangs.

— This is a form of ¢

ynamic testing that evaluates a

program’s performance at run-time.

— Because the inputs are often unexpected values,
they can find crashes that are not seen with dynamic
analysis edge cases.

AN\

THE UNIVERSITY OF

Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Introduction to Fuzzing - 2

* The term “fuzzing” was coined by Professor
Barton Miller at the University of Wisconsin-
Madison.

— It was a project assignment for his CS736 class in
1988.

— The assignment was to create a “Fuzz Generator” to
supply various types of random ASCIl inputs to UNIX
utilities and try to break them.

* They broke about 30% of them.

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Introduction to Fuzzing - 3

* Fuzzing programs can be dumb or intelligent.

 The dumb programs are brute force methods that just
randomly try inputs.

— If the program takes complicated input formats or has a lot of
conditional paths, the random inputs are unlikely to be
formatted well enough to make it very far through the
program’s control flow.

* The intelligent programs supply inputs that are usually
not completely random, but mutated forms of valid input
structures.

— This allows for inputs that reach certain paths to be held
static with other values changed to test out different paths
more thoroughly and discover more paths.

e Refered to as guided fuzzing.

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Introduction to Fuzzing - 4

— Software developers and testers utilize fuzzing
to improve the quality of products under
development

— Hackers use fuzzing techniques to discover
defects that may prove to be exploitable

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Fuzzing with AFL

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Fuzzing with AFL-0

* The American Fuzzy Lop is a rabbit.

https://zepafarm.club/american-fuzzy-lop-rabbit/

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Fuzzing with AFL- 1

* The American Fuzzy Lop is a rabbit.

* AFL, named for the rabbit, is an open-source fuzzer
that can make use of instrumentation inserted into
the compiled code for the unit under test to keep
track of paths found.

* |t also uses genetic algorithms to trim the test cases
to the smallest size possible.
— The developer also cautions against supplying extra
inputs where one with the proper format will suffice.

* e.g. an image processing program only needs one picture of
each type it accepts as input for the fuzzer to learn the format.

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Fuzzing with AFL - 2

* The developer describes AFL’s overall process as
follows:
— Load user test cases into a queue
— Take next file from the queue

— Try to trim the test case so that it doesn’t alter the
measured behavior of the program

— Mutate the file using a variety of strategies

— If a new path is found, add that mutated input as a new
entry in the queue

— Repeat

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Fuzzing with AFL- 3

* The latest version of AFL is available from the
developer’s web site and can be obtained by using
the command:

— wget http://Icamtuf.coredump.cx/afl/releases/afl-
latest.tgz

 Then you can extract and build it with the supplied
makefile

e NOTE: For LabO05, the AFL tool is already installed
on the ENG 246 Linux lab machines which are
remotely accessible

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Access to AFL

e SSH to blackhawk.ece.uah.edu
* Then from blackhawk, SSH to an ENG 246 lab
machine

ssh =Y username@®172.21.246.X
where 1 <= X <= 35

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #1
Simple Example — Crashy

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #1 - Crashy - 1

* Crashy.cis a sample program that reads and
prints out a custom file format.

xray@xray:~/NSA/Fuzz/crashys ls
crashy crashy.c crashyGDB exampleCrash@l inputFiles Makefile
xray@xray:~/NSA/Fuzz/crashy$ cd inputFiles/
xray@xray:~/NSA/Fuzz/crashy/inputFiless 1s
examplel example2 example3 example4 example5
xray@xray:~/NSA/Fuzz/crashy/inputFiless ../crashy examplel
1: 0x78563412
c: Oxcc
s: hello
xray@xray:~/NSA/Fuzz/crashy/inputFiles$../crashy example2
1: 0x00000001

: OxO00POBLO2

: OxOOOOOBB3

: Ox00000004

: OxOOOOOBOS

this
1s
an

3
g
1
1
xray@xray:~/NSA/Fuzz/crashy/inputFiles$../crashy example3
-
-
-
s: example

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Crashy Input File Format

* Input file format: Block-Type Value
— 0Ox01: 32-bit integer

— : 8-bit character
— . string (length including null terminator)

— 0x04: comment (null terminated string)
* Terminated with Oxff

-bash-4.2$ hexdump -C examplel

00000000 01 12 34 56 78 . cc . 06 00 00 00 68 65 6c 6 |..4Vx....... hell|
00000010 6£f 0O E lo. .|

00000013

-bash-4.2$

-bash-4.2$./crashy examplel
i: 0x78563412

c: Oxcc

s: hello

-bash-4.2$

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #1 oo Crashy - 2

type = buffer[ptr++];

)) switch(type) {
#include <stdio.h> case "\x01': // integer
#include <stdlib.h> tmp_int = *(int *)(buffer + ptr);
#include <string.h> ptr += sizeof(int);
int main(int argc, char *argv[]) { printf("i: 0x%08x\n", tmp_int);
FILE *fp; break;
unsigned int sz, len, ptr; case '\x02": // char
char *buffer; tmp_char = buffer[ptr++];
char type; printf("c: 0x%02x\n", (unsigned char)tmp_char);
char tmp_char; break;
int tmp_int; case '\x03'": // string
char *tmp_string; len = *(int *)(buffer + ptr);
if(arge 1= 2) { ptr += sizeof(int);
fprintf(stderr, "Usage: %s <inputfile>\n", tmp_string = malloc(len);
argv[0]); if(Itmp_string) {
return 1; fprintf(stderr, "Failed to allocate
} %d bytes of memory\n", len);
fp = fopen(argv[1], "r"); return 1;
if(!fp) { }
fprintf(stderr, "Failed to open '%s'\n", argv[1]); strcpy(tmp_string, (buffer + ptr));
return 1; printf("s: %s\n", tmp_string);
} ptr += len;
fseek(fp, 0, SEEK_END); break;
sz = ftell(fp); case "\x04'": // comment
fseek(fp, 0, SEEK_SET); printf("#: %s\n", (buffer + ptr));
buffer = malloc(sz); while(*(buffer + ptr++) !="\x00');
if('buffer) { break;
fprintf(stderr, "Failed to allocate %d bytes of case "\xff': // END
memory\n", sz); return O;
return 1; default:
} fprintf(stderr, "Unknown data type '%c'\n", type);
fread(buffer, sizeof(char), sz, fp); }

A
}

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

AFL Compilation

-bash-4.2$ cat Makefile
CC := afl-gcc
CFLAGS := -Wno-unused-result

all: crashy.c
$ (CC) S$(CFLAGS) -o crashy crashy.c

clean:
rm crashy
-bash-4.2$
-bash-4.2$ make
afl-gcc -Wno-unused-result -o crashy crashy.c
afl-cc 2.52b by <lcamtuf@google.com>
afl-as 2.52b by <lcamtuf@google.com>

[+] Instrumented 23 locations (32-bit, non-hardened mode,
ratio 100%).

-bash-4.2$

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

AFL Input File Analysis

* Input file format: Block-Type Value
— 0x01: 32-bit integer

— : 8-bit character
— . string (length including null terminator)

— 0x04: comment (null terminated string)
 Terminated with Oxff

-bash-4.25 afl-analyze -i examplel ./crashy @@
2.52b by <lcamtuf@google.com>

Read 19 bytes from 'examplel'.
Performing dry run (mem limit = 50 MB, timeout = 1000 ms)...
Analyzing input file (this may take a while)...

01 - no-op block - suspected length field
01 - superficial content - suspected cksum or magic int
i - gritical stream - suspected checksummed block

- "magic value" section

#1r2namsrEn [Dr] #eE [IE h e

o #00 @ ©
Analysis complete. Interesting bits: 42.11% of the input file.
We're done here. Have a nice day!

—bash-4.2% []

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #1 - Crashy - 3

* Given the source code and a few example input
files, we can fuzz the program using AFL.

* First, we extract the compressed crashy files
from the supplied zip file.

unzip crashy.zip

AN\

THE UNIVERSITY OF

Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #1 - Crashy - 4

 Then, we use AFL's modified version of gcc to

compile the code with the instrumentation it needs
for intelligent fuzzing.

xray@xray:~/NSA/Fuzz/crashy$ make CC=$HOME/NSA/Fuzz/afl-2.52b/afl-gcc CFLAGS=-Wno-unused-re
sult

/home/xray/NSA/Fuzz/afl-2.52b/afl-gcc -Wno-unused-result -o crashy crashy.c

afl-cc 2.52b by <lcamtuf@google.com=
afl-as 2.52b by <lcamtuf@google.com=
[+] Instrumented 22 locations (64-bit, non-hardened mode, ratio 100%).

* NOTE: The provided Makefile has already been altered,
replacing gcc with afl-gcc so there is no need to supply
make with command line arguments as shown above

* To compile, type
make

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #1 - Crashy - 5

 Before we can start the fuzzer, we need to set up
the directory structure so that we have an input
directory with the example files and an empty
output directory to hold the findings and
progress information AFL uses.

xray@xray:~/NSA/Fuzz$ cd crashy

xray@xray:~/NSA/Fuzz/crashys 1s

crashy.c examplel example2 example3 example4 exampleS Makefile
xray@xray:~/NSA/Fuzz/crashys mkdir inputFiles outputResults
xray@xray:~/NSA/Fuzz/crashys mv example* inputFiles/

xray@xray:~/NSA/Fuzz/crashys cd inputFiles/
xray@xray:~/NSA/Fuzz/crashy/inputFiless ls
examplel example2 example3 exampled4 example5

— We just made subdirectories in the crashy/ folder
called inputFiles and outputResults.

AT\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #1 - Crashy - 6

* Finally, we can start AFL while in the directory with
crashy’s executable with the command:

afl-fuzz -i inputFiles -o outputResults ./crashy @@

* The -i flag tells AFL where to find input examples
and the -o flag is where the results will be placed.

— If the process is interrupted, you can continue by passing
a dash as the input directory (-i -) and using the same

output directory.

* The @@ is a placeholder for a filename which AFL
will supply from the input examples it finds.

AN\

THE UNIVERSITY OF

Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #1 - Crashy - 7

xray@xray:~/NSA/Fuzz/crashy$s $HOME/NSA/Fuzz/afl-2.52bsafl-fuzz -1 inputFiles -o outputResults ./cras
hy @@

afl-

[+]
[+]

[+]

[*]
[+]
[*]
[+]
[*]
8

[%]
[*]

fuzz 2.52b by <lcamtuf@google.com=

You have 20 CPU cores and 2 runnable tasks (utilization: 10%).

Try parallel jobs - see docs/parallel fuzzing.txt.
Checking CPU core loadout...

Found a free CPU core, binding to #0.

Checking core pattern...

Setting up output directories...

Output directory exists but deemed 0K to reuse.
Deleting old session data...

Output dir cleanup successful.

Scanning 'inputFiles’'...

No auto-generated dictionary tokens to reuse.

] Creating hard links for all input files...
] validating target binary...

Attempting dry run with '1d:000000,orig:examplel’...

] Spinning up the fork server...

All right - fork server 1is up.

[*] Attempting dry run with '1d:000001,orig:example2’...

*] Attempting dry run with '1d:000002,orig:example3’...

[*] Attempting dry run with '1d:000003,orig:exampled’...

[*] Attempting dry run with '1d:000004,orig:example5'...

All test cases processed.
Here are some useful stats:
3 favored, 0 variable, 5 total

11 to 16 bits (average: 13.20 bits)
169 to 199 us (average: 177 us)

| No -t option specified, so I'll use exec timeout of 20 ms.

All set and ready to roll!

Sponsored by National Security Agency Grant H98230-17-1-0344

AN\

THE UNIVERSITY OF
ALABAMA IN HUNTSVILLE

Example #1 - Crashy - 8

e After it starts, AFL will continue until you use
CtrI-Co american fuzzy lop 2.52b (crashy)

process timing overall results
@ days, 1 hrs, 17 min, 19 sec 228
@ days, 0 hrs, 32 min, 37 sec 95
@ days, 1 hrs, 15 min, 1 sec g
1one seen yet ¢]
cycle progress map coverage
92* (96.84%) 0.04% / 0.06%
0 (0.00%) 4.37 bits/tuple
stage progress findings 1in depth
arith 8/8 13 (13.68%)
359k/371k (96.71%) 14 (14.74%)
9.55M 2339 (9 unique)
645.8/sec 1 (1 unique)
fuzzing strategy yields path geometry
10/378k, 27378k, 1/378k 6
0/47.3k, 0/31.8k, 1/32.2k 2
6/1.40M, 0/1.31M, 0/606k 0
0/84.6k, 37437k, 3/843k 90
/0, 6/0, 06/93.2k n/a
55/1.33M, 18/1.83M 100.00%
22.94%/13.1k, 33.02%
5%

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

* Crashy after 1 hour and 228 cycles had found 9 unique crashes.

Example #1 - Crashy - 9

* 14 hours later there were no additional unique
CraSheS. american fuzzy lop 2.52b (crashy)

process timing overall results
0 days, 14 hrs, 31 min, 30 sec 8818
@ days, 6 hrs, 42 min, 6 sec 98
0@ days, 14 hrs, 29 min, 11 sec g
one seen yet 0
cycle progress map coverage
24 (24.49%) 0.03% / 0.06%
0 (0.00%) 4.47 bits/tuple
stage progress findings 1in depth
splice 3 13 (13.27%)
31/32 (96.88%) 14 (14.29%)
136M 163k (9 unique)
4620/sec 11 (1 unique)
fuzzing strategy yields path geometry
107776k, 27775k, 17775k 6
0/97.0k, 0/65.5k, 1/67.0k 0
6/3.62M, 0/3.52M, 0/2.10M 0
0/203k, 37990k, 3/1.97M 93
/0, 0/0, 0/326k n/a
57/40.9M, 19/74.3M 100.00%
15.73%/16.9k, 33.17%
5%

* Note it had only been half that time since the last new path was

found. M\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Quiz-Lab05

* Continue running AFL on the crashy program
until you see unique crashes identified

 With AFL displaying in RED that unique crashes
have been identified, TAKE A SCREENSHOT for

submission to the Quiz-Lab05

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #1 - Crashy - 10

Now we review the findings by looking in the
output directory.

xray@xray:~/NSA/Fuzz/crashys cd outputResults/
xray@xray -/NSA/Fuzz/crashy/outputResultss ls

es fuzz_bitmap fuzzer_stats hangs plot_data
xray@xray /NSA/Fuzz/crashy/outputResultsS cd crashes
xray@xray:~/NSA/Fuzz/crashy/outputResults/crashess s
d:000001,519:06,src:000005,0p:havoc,rep:16
1d:000002,519:11,src:000021,0p:havoc, rep:

1d:000003,519:11,src:000023,0p:havoc,rep:
1d:000004,519:06,src:000002,0p:havoc, rep:
1d:000005,519:11,src:000034,0p:1nt32,pos:2,val:+1000
1d:000006,519:06,5rc:000051,0p:havoc,rep:8
1d:000007,51g9:11,src:000060+000072,0p:splice, rep: 2
1d:000008,51g:11,src:000021+000072,0p:splice, rep:
README . txt

* The inputs that caused crashes are in the
crashes/ folder and are named accordingly.

AT\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #1 - Crashy - 11

* We can then confirm that input example will
cause a crash by running it directly.

xray@xray:~/NSA/Fuzz/crashy$./crashy exampleCrashel
Unknown data type ‘i
Unknown data type '°
Unknown data type '4'

Unknown data typ

c: Oxcc

s: hello

Unknown

Unknown data type ‘'

Unknown data type '}’

Unknown data type 'V'
Unknown data type 'x’
c: Oxcc \
Segmentation faul

+4

* Then debuggig can begin using these samples
to find the root cause and hopefully correct it.

AT\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #2
Common Utility - SQLite

A\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Example #2 — SQLite - 1

* The previous example was designed to have
faults and to be simple enough for the fuzzer to
evaluate quickly

* This example will take a more popular utility,
SQLite, and show how the fuzzer can be used to
test it as well

 To save time, the instructor will demonstrate
parallel fuzz testing of sqlite

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Discu

ssion

* Once you have sample input files that cause
crashes and/or hangs, you may use gdb to
determine (1) the nature of the defects and (2) if
the defects are exploitable

* The random nature of fuzzing makes it necessary
to use other code analysis tools to ensure
complete code coverage.

 Still, fuzzing is a good ad
because the unexpectec

dition to a tester’s toolkit
semi-valid inputs can

help find bugs that wou
missed.

d have been otherwise

AN\

THE UNIVERSITY OF

Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

Summary

* Fuzzing

— A software testing method that alters inputs to a
program in order to see how it performs with
unexpected, invalid, and random input.

* AFL

— A good open-source input file fuzzer that
instruments code to enable guided fuzzing for
better results.

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

References

* Fuzz Testing of Application Reliability

http://pages.cs.wisc.edu/~bart/fuzz/

 American Fuzzy Lop (2.52b)

http://lcamtuf.coredump.cx/afl/

* Crashy - Fuzzing Toy Program Example

https://??2?2??

e SQLite - version 3.7.17

https://www.sqglite.org/2013/sqlite-autoconf-3071700.tar.gz

AN\

THE UNIVERSITY OF
Sponsored by National Security Agency Grant H98230-17-1-0344 ALABAMA IN HUNTSVILLE

