
Lab06 - Static Analysis

Dr. David J. Coe
Software Safety and Security Engineering Lab

Electrical and Computer Engineering
Department

Sponsored by National Security Agency Grant H98230-17-1-0344

Outline
• Introduction to Static Analysis
• Coding Standards
– Sample Rules

• Static analysis with open source programs
– Using Cppcheck

• Lab06
– Static Analysis of ec3.cpp

• Discussion
• Summary

Sponsored by National Security Agency Grant H98230-17-1-0344

Introduction to Static Analysis

Sponsored by National Security Agency Grant H98230-17-1-0344

Introduction to Static Analysis - 1
• What is Static Analysis?
– The methodology used when analyzing software

without actually running the program
– Requires access to the source code

• The purpose of static analysis is to identify
common types of defects that may impact
correct operation or security

Sponsored by National Security Agency Grant H98230-17-1-0344

Introduction to Static Analysis - 2
• Static analysis uses various methods to accomplish

its goal including:
– Adherence to coding standards
– Data flow analysis
– Control flow analysis
– Input validation
– Error handling

• These areas can help identify coding errors that
could lead to undesirable and unsafe output
conditions

Sponsored by National Security Agency Grant H98230-17-1-0344

Coding Standards

Sponsored by National Security Agency Grant H98230-17-1-0344

Coding Standards - 1
• Historically, coding conventions have focused on improving readability

and maintainability by advocating
– Consistency of presentation
– Consistency of naming of variables, constants, functions, etc.
– Consistency of documentation
– Computational complexity: cyclomatic complexity
– Etc.

• Coding conventions have evolved into coding standards to address
defects that may manifest during operation
– Runtime issues: use of uninitialized variables
– Security issues: buffer overflow
– Safety issues: unreachable code

• Some coding standards are intended for new development only, others
may be applied to clean up legacy code

Sponsored by National Security Agency Grant H98230-17-1-0344

Coding Standards - 2
• Motor Industry Software Reliability Association

– MISRA C and MISRA C++ coding standards
– MISRA C goals

• Safety, security, portability, and reliability of code implemented in C (according to Wikipedia)

• Joint Strike Fighter C++ Air Vehicle
– JSF++AV
– http://www.stroustrup.com/JSF-AV-rules.pdf

• High Integrity C++
– https://www.perforce.com/blog/qac/high-integrity-cpp-hicpp

• CERT C / CERT JAVA
– https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
– Security-focused coding standards

• MathWorks Automotive Advisory Board
– MAAB Control Algorithm Modeling Guidelines Using MATLAB, Simulink, and Stateflow

• Like programming languages themselves, these standards evolve over time

Sponsored by National Security Agency Grant H98230-17-1-0344

http://www.stroustrup.com/JSF-AV-rules.pdf
https://www.perforce.com/blog/qac/high-integrity-cpp-hicpp
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

Sample Rules

Sponsored by National Security Agency Grant H98230-17-1-0344

Sample Rules - 1
MISRA C

• MISRA C Rule 14.1
– There shall be no unreachable code

• MISRA C Rule 14.7
– A function shall have a single point of exit at the end of the

function
• MISRA C Rule 9.1

– All automatic variables shall have been assigned a value before
being used

• MISRA C Rule 20.4
– Dynamic heap allocation shall not be used

https://pubweb.eng.utah.edu/~cs5785/slides/08.pdf

Sponsored by National Security Agency Grant H98230-17-1-0344

Sample Rules - 2
MISRA C

• MISRA C Rule 5.2
– Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier

int total;

int foo(int total) {
return 3 * total;

}

https://pubweb.eng.utah.edu/~cs5785/slides/08.pdf

Sponsored by National Security Agency Grant H98230-17-1-0344

Sample Rules - 3
MISRA C

• MISRA C Rule 17.6
– The address of an object with automatic storage shall not be

assigned to another object that may persist after the first object
has ceased to exist

int * foo(void) {
int x;
int *y = &x;
return y;

}

https://pubweb.eng.utah.edu/~cs5785/slides/08.pdf

Sponsored by National Security Agency Grant H98230-17-1-0344

Sample Rules - 4
JSF++ AV

• AV Rule 1
– Any one function (or method) will contain no more than

200 logical source lines of code
(L- SLOCs).

• Rationale: Long functions tend to be complex and
therefore difficult to comprehend and test.

http://www.stroustrup.com/JSF-AV-rules.pdf

Sponsored by National Security Agency Grant H98230-17-1-0344

Sample Rules - 5
JSF++ AV

• AV Rule 206 (MISRA Rule 118, Revised)
– Allocation/deallocation from/to the free store (heap) shall

not occur after initialization.

• Rationale: repeated allocation (new/malloc) and
deallocation (delete/free) from the free store/heap can
result in free store/heap fragmentation and hence non-
deterministic delays in free store/heap access.

http://www.stroustrup.com/JSF-AV-rules.pdf

Sponsored by National Security Agency Grant H98230-17-1-0344

Static Analysis with
Open Source Programs

Sponsored by National Security Agency Grant H98230-17-1-0344

Static Analysis with Open Source Programs - 1

• While LDRA is a useful tool, it is one of many
commercial products that are not free.
– Luckily there are many open source tools available as

well for the frugal developer.

• Be aware, commercial or otherwise, no one tool
will always find all of the errors in a program.
– It is advisable to develop testing plans that make use

of several different tools.

Sponsored by National Security Agency Grant H98230-17-1-0344

Static Analysis with Open Source Programs - 2

• Some of the available open source static analysis
tools include:
– Cppcheck
• Has a focus on detecting undefined behavior

– Clang
• Compiler that includes a static analyzer

– Eclipse
• IDE that includes static analyzers

– including cppcheck with a plugin called cppcheclipse

Sponsored by National Security Agency Grant H98230-17-1-0344

Static Analysis with Open Source Programs - 3

• We will use Cppcheck in the following example.
– The developers of Cppcheck warn that it focuses on

bugs over stylistic issues and tries to avoid false
positives.
• False positives are errors that are reported but are not

actually errors on review.

– This means it is likely to not report some of the more
questionable bugs.

Sponsored by National Security Agency Grant H98230-17-1-0344

Static Analysis with Open Source Programs - 4

– Dead pointers
– Division by zero
– Integer overflows
– Invalid bit shift

commands
– Invalid conversions
– Memory management

– Null pointer
dereferences

– Out of bounds checking
– Invalid usage of STL
– Uninitialized variables
– Writing const data

Sponsored by National Security Agency Grant H98230-17-1-0344

• The bugs that Cppcheck focuses on include:

Lab06 – Static Analysis of ec3.cpp

Sponsored by National Security Agency Grant H98230-17-1-0344

Lab06 Overview

• For Lab06, you will analyze sample code using
two different compilers and an open source
static analysis tool

• Detailed instructions for Lab06 are available
within Canvas under the Modules tab

Sponsored by National Security Agency Grant H98230-17-1-0344

Lab06 – ec3.cpp Source Code

Sponsored by National Security Agency Grant H98230-17-1-0344

void f(int a);
bool g(int& b);
int main(int argc, char* argv[])
{

char a[10];
// Array bounds error
a[10] = 0;
// Array bounds error via loop
for(int k = 0; k <= 10; k++)
{

a[k] = k;
}
// Array bounds error via loop
int m = 0;
while (true)
{

a[m] = m; m++;
}
// Pointer variable p uninitialized
int* p;
*p = 5;
// Null pointer dereference
int* x = 0;
*x = 1;
// Trigger path in function g that does not return Boolean
int c = -1;
if (g(c)) c = 2;
else c = 3;
// Memory leak
int* q = new int;
// Memory leak
int* r = new int[4];
delete r;
return 0;

}

// Unused function f
void f(int a)
{

a = a + 1;
// No side effect outside function

}

// Function g has one path that does not return a Boolean value
bool g(int& b)
{

if (b > 0) return false;
b = 0; // Exit without returning a Boolean

}

• The source code for ec3.cpp
• Static analysis does not require compilation

Discussion - 1

• The static analysis of code is critical during
code review to help ensure the proper
operation of the program.
– However, no single tool is guaranteed to find all

bugs existing in a program.
– Be prepared to use multiple tools to help find

bugs and still need to perform additional testing
to find them all.

Sponsored by National Security Agency Grant H98230-17-1-0344

Discussion - 2

• Strict adherence to coding standards can help
avoid many bugs and errors.

• A lot of static analyzers focus on checking for
compliance with these coding standards,
while others focus on various types of bugs.

Sponsored by National Security Agency Grant H98230-17-1-0344

Discussion - 3

• False positives are very common with static
analysis.
– Many tools are considered ‘noisy’ and err on the side

of caution when reporting errors.
– It is up to the developer to sort through the reported

errors and determine if they are valid or not.

• False negatives occur when a bug exists, but is
not reported.
– These are a more severe problem and more

motivation behind using multiple tools for analysis.

Sponsored by National Security Agency Grant H98230-17-1-0344

Summary
• Static analysis
– Code review with access to source code that helps ensure

it is conforming to coding standards
– Tests the robustness of code to safeguard against attacks

and failure
• Commercial static analysis tools
– LDRA is one of many available to help automate code

review and standards compliance
– Help to prove to customers that product requirements

have been met
• Open source static analysis tools
– Free options for code review that are useful with larger

projects with fewer of the bells and whistles

Sponsored by National Security Agency Grant H98230-17-1-0344

