
1

Threads, MUTEX & Semaphores

2

Threads

3

Introduction

1. In the traditional Unix model, when a process needs something

performed by another entity, it forks a child process. There are

problems with a fork:

⮚ Fork is expensive. Memory is copied from the parent to the child,

all the descriptors are duplicated in the child. Current implementation

use a technique called copy-on-write, which avoids a copy of the

parent’s data space to the child until the child needs its own copy.

⮚ Inter process communication is required to pass information

between the parent and child after the fork.

2. Threads help with both problems. Threads are sometimes called

lightweight processes. That is a thread creation can be 10-100 times

faster than process creation time.

4

All threads within a process share the same global memory. This

makes the sharing of information easy between the threads, but

along with this simplicity comes the problem of synchronization.

All threads within a process share:

• Process instructions

• Most data

• Open files (e.g. descriptors)

• Signal handlers

• Current working directory

• User and group Ids

Threads and processes

5

But each thread has its own:

• Thread ID

• Set of registers, including program counter and stack

pointer

• Stack (for local variables and return addresses)

• Errno

• Signal mask

• Priority

Threads and processes

6

Thread Usage Reasons

1. Simplifying programming model by
decomposing application into quasi-parallel
threads.

2. Thread creation is up to 100 times faster than
process creation.

3. Performance is better when there is I/O besides
CPU bursts. Overlapping those activities speed
up application.

4. Threads are useful on multiple CPUs systems,
where real parallelism is possible.

7

Linux implements the POSIX standard thread API

(known as pthreads). All thread functions and data

types are declared in the header file <pthread.h>.

The pthread functions are not included in the standard C

library. Instead, they are in libpthread, so you should

add -lpthread to the command line when you link your

program.

pthread Library

8

❑When a program is started by exec, a single thread is created, called

the initial thread or main thread. Additional threads are created by

pthread_create.

#include <pthread.h>

int pthread_create(pthread_t *tid, const pthread_attr_t *attr,

void *(*func) (void *), void *arg);

Returns 0 if OK, positive Exxx value on Error

❑Each thread within a process is identified by a thread ID, whose

data type is pthread_t. On successful creation of a new thread, its ID

is returned through the pointer tid.

pthread_create

9

Each thread has numerous attributes: its priority, its initial stack size,

whether it should be daemon thread or not, and so on. When a thread

is created, we can specify these attributes by initializing a

pthread_attr_t variable that overrides the default. We normally take

the default, we specify the attr argument as a null pointer.

When we create a thread, we specify a function for it to execute,

called its thread start function. The thread starts by calling this

function and then terminates either explicitly (by calling

pthread_exit) or implicitly (by letting this function return).

The address of the function is specified as the func argument, and

this function is called with a single pointer argument, arg.

Thread Creation

10

We can wait for a given thread to terminate by calling pthread_join.

Comparing threads to Unix processes, pthread_create is similar to

fork, and pthread_join is similar to waitpid.

#include <pthread.h>

int pthread_join(pthread_t tid, void **status);

Returns 0 if OK, positive Exxx value on error

pthread_join

11

Each thread has an ID that defines it with in a given process. The

thread ID is returned by pthread_create. A thread fetches this value

for itself using pthread_self.

#include <pthread.h>

pthread_t pthread_self(void);

Returns thread ID of calling thread

pthread_self

12

One way for a thread to terminate is to call pthread_exit.

#include <pthread.h>

void pthread_exit(void *status);

Does not return to caller

If the thread is not detached, its thread ID and exit status are

Retained for a later pthread_join by some other thread

in the calling process.

pthread_exit

13

Thread attributes provide a mechanism for fine-tuning the behavior

of individual threads.

int pthread_attr_init (pthread_attr_t *attr) ;

int pthread_attr_destroy (pthread_attr_t *attr) ;

int pthread_attr_setdetachstate (pthread_attr_t *attr,

int detachstate) ;

int pthread_attr_setschedpolicy (pthread_attr_t *attr, int policy) ;

int pthread_attr_setschedparam (pthread_attr_t *attr,

struct sched_param *param);

int pthread_attr_setinheritsched (pthread_attr_t *attr, int inherit);

Int pthread_attr_setscope (pthread_attr_t *attr , int scope);

Thread Attributes

14

Cancellation

int pthread_cancel (pthread_t thread) ;

int pthread_setcancelstate (int state , int *oldstate) ;

int pthread_setcanceltype (int type , int *oldtype) ;

void pthread_testcancel (void) ;

Cancellation is the mechanism by which a thread can terminate

the execution of another thread . More precisely a thread can send

cancellation request to another thread. Depending on its setting

the target thread can then either ignore the request , honor

it immediately or defer it till it reaches a cancellation point.

When a thread eventually honors a cancellation request ,

it performs as if pthread_exit(PTHREAD_CANCEL) has been

called at that point .

15

Multi-threaded programs are concurrent and share the same process

space and can access the same data structures.

Threads are scheduled by OS and are executed at random. When

threads are executing (racing to complete) they may give unexpected

results (race condition).

Race Condition is a situation in which an unfortunate order of

execution causes undesirable behavior .

Synchronization and Critical-sections

16

The threads library provides three synchronization mechanisms:

• mutexes - Mutual exclusion lock: Block access to variables by

other threads. This enforces exclusive access by a thread to a

variable or set of variables.

• joins - Make a thread wait till others are complete (terminated).

• condition variables - data type pthread_cond_t

•Waking and Suspending threads (RTL)

Thread Synchronization

17

A join is performed when one wants to wait for a thread to finish.

A thread calling routine may launch multiple threads then wait for

them to finish to get the results. One wait for the completion of the

threads with a join.

int pthread_join (pthread th , void **thread_return) ;

Joins

18

A semaphore is a counter that can be used to synchronize multiple

threads. Linux guarantees that checking or modifying the value of

a semaphore can be done safely, without creating a race condition.

Each semaphore has a counter value, which is a non-negative integer.

A semaphore supports two basic operations:

A wait operation decrements the value of the semaphore by 1. If

the value is already zero, the operation blocks until the value of the

semaphore becomes positive.When the semaphore’s value becomes

positive, it is decremented by 1 and the wait operation returns.

POSIX SEMAPHORES

19

A post operation increments the value of the semaphore by 1. If the

semaphore was previously zero and other threads are blocked in a

wait operation on that semaphore, one of those threads is unblocked

and its wait operation completes.

….POSIX SEMAPHORES

20

SEMAPHORES

The state diagram of a binary semaphore. The state diagram of a counting semaphore

about:blank

21

#include < semaphore .h >

int sem_init (sem_t *sem , int pshared, unsigned int val) ;

int sem_wait (sem_t *sem) ;

int sem_trywait (sem_t *sem) ;

int sem_post (sem_t *sem) ;

int sem_getvalue (sem_t *sem , int *sval) ;

int sem_destroy (sem_t *sem) ;

….POSIX SEMAPHORES

22

A mutex is a MUTual EXclusion device, and is useful for

protecting shared data structures from concurrent modifications,

and implementing critical sections.

A mutex has two possible states: unlocked (not owned by any

thread), and locked (owned by one thread).

#include < pthread .h >

int pthread_mutex_init (pthread_mutex_t *mutex,

const pthread_mutex attr_t *mutexattr) ;

int pthread_mutex_lock (pthread_mutex_t *mutex);

int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_trylock (pthread_mutex_t *mutex) ;

POSIX Mutexes

23

POSIX Mutexes

about:blank

24

The mutex variable should be declared and initialized only once as

given below:

pthread_mutex_t mutex;

pthread_mutex_init (&mutex, NULL);

Another way to create a mutex with default attributes is to initialize

it with the special value PTHREAD_MUTEX_INITIALIZER.

No additional call to pthread_mutex_init is necessary.

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_init()

25

A shared global variable x can be protected by a mutex as follows:

int x;

pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

All accesses and modifications to x should be bracketed by calls to

pthread_mutex_lock and pthread_mutex_unlock as follows:

pthread_mutex_lock(&mut);

/* operate on x */

pthread_mutex_unlock(&mut);

pthread_mutex_lock()

26

Deadlocks can occur when two (or more) threads are each blocked,

waiting for a condition to occur that only the other one can cause.

For instance, if thread A is blocked on a condition variable waiting

for thread B to signal it, and thread B is blocked on a condition

variable waiting for thread A to signal it, a deadlock has occurred

Because neither thread will ever signal the other.

You should take care to avoid the possibility of such situations

because they are quite difficult to detect.

Deadlocks

27

Semaphores can also result in deadlocks. Assume two tasks share

two resources and lock them in different orders. One task (Task B)

locks the first resource using semaphore S1. Then, in the ordinary

course of events a second task (Task A) runs and locks the second

resource with semaphore S2. It needs to use the first resource (S1),

but cannot because it is locked by the first task (Task B). All it can do

is pass control back to the first task (Task B), which then attempts to

use the second resource (S2). It cannot use it because the second task

(Task A) has locked it, so it passes control back to the second resource.

But the second resource cannot run, so it passes control back to the

first task, endlessly. The two tasks are deadlocked because each is

waiting on a semaphore locked by the other task.

Deadlocks

28

Two tasks reaching deadlock

