
The Department of Electrical and Computer Engineering

The University of Alabama in Huntsville

CPE 435 Lab-09

Code Testing & Performance Analysis and Energy Consumption

Introduction

You will use a few utilities that will help you debug and analyze your software. Please run all the
experiments and write down your observations.

Part I: Valgrind

Valgrind is a tool suite that provides a number of debugging and profiling tools. You can make your
program faster and more correct using Valgrind. Of the many tools available, we will use
memcheck and cachegrind tools. Please visit the quick start tutorial at the official site.

Part I.a: Cachegrind

Cachegrind is a tool available in Valgrind that simulates how your program interacts with the
machine's cache hierarchy and branch predictor. It simulates independent first-level caches: I and D-
cache and unified second level cache. Please go through the tutorial at this link, and try to answer the
following question:

Most of the modern processors have three levels of cache. As presented above, cachegrind
simulates two levels of caches. How does cachegrind handle the machines that have more
than two levels of caches? Why does cachegrind do what it does for handling three levels of
cache hierarchy? [5+5]

Assignment I:

You are given the following two codes. Please compile and run the codes. Please paste the
demonstration run in your report. Write what each of the programs is doing. Please note the
difference between the two programs. [5]

/*
File: test1.cpp
compile as g++ test1.cpp -o test1
*/
using namespace std;
#include <iostream>
main()
{

int array[1000][1000];
int i,j;
for(i=0;i<1000;i++)

for(j=0;j<1000;j++)
array[i][j]=0;

cout << "array[0][0] was " << array[0][0] << endl;
}

https://www.valgrind.org/docs/manual/quick-start.html
https://www.valgrind.org/docs/manual/cg-manual.html

/*
File: test2.cpp
compile as g++ test2.cpp -o test2
*/
using namespace std;
#include <iostream>
main()
{

int array[1000][1000];
int i,j;
for(i=0;i<1000;i++)

for(j=0;j<1000;j++)
array[j][i]=0;

cout << “array[0][0] was " << array[0][0] << endl;
}

Assignment II:

Now run each of the programs with valgrind using the cachegrind tool. Please grab the screenshot
of the outputs using cachegrind where you should highlight the D1 cache misses for each of
the programs. You might want to run the programs as below in your command line. [3]

valgrind -v --tool=cachegrind ./test1
valgrind –v --tool=cachegrind ./test2

Do you see any difference in the numbers? Please answer the following questions based on your
observations:

1. Which program is better in terms of performance? [2]
2. Why do you think one program is better? Explain in detail [5]

Part I.b memcheck

Memcheck is the default tool in valgrind. You may specify --tool=memcheck , but it is not needed. In
our exercise, we will try to find memory leaks in our code exercise. Please go through the official
documentation as this link to learn more on how to use this tool.

Valgrind allows you to run your program in Valgrind's own environment that monitors memory usage
such as calls to malloc and free (or new and delete in C++). If you use uninitialized memory, write off
the end of an array, or forget to free a pointer, Valgrind can detect it. Since these are particularly
common problems, this tutorial will focus mainly on using Valgrind to find these types of simple
memory problems, though Valgrind is a tool that can do a lot more.

Assignment III:

You are given the following codes. Please compile and run them. Please write what is the problem
with each of the codes. [3]

https://www.valgrind.org/docs/manual/mc-manual.html

//file: test 3 compile as test3
#include <stdlib.h>
int main()
{

char *x = (char*)malloc(100); /* or, in C++, "char *x = new char[100] */

return 0;
}

//file: test4 compile as test4
#include <stdlib.h>
int main()
{

char *x = (char*)malloc(10);
x[10] = 'a';
return 0;

}

//file: test5 compile as test5

#include <stdio.h>
int main()
{

int x;
if(x == 0)
{

printf("X is zero"); /* replace with cout and include iostream for C++ */
}
return 0;

}

Assignment IV:

Run each of the following programs with valgrind so that you will test the memory leaks. You might
want to use the following commands in the terminal to run them. Please grab screenshots [3] and
explain each of them with focus on error/s indicated for each of the programs. [7]

valgrind --tool=memcheck --leak-check=yes ./test3

valgrind --tool=memcheck --leak check=yes ./test4

valgrind --tool=memcheck --leak-check=yes ./test5

Part II: Power Consumption measurement

The next section of this lab involves using a power measurement tool to determine which is the best
sorting algorithm based on power consumption and work performed. If you are running linux natively,
you should use the RAPL model. If you are using a VM on a Windows host, it is recommended to
use the Hardware Monitor Pro application. If you are using a MAC, it is recommended to use the
Activity Monitor. You will only need to use one of the tools for this part of the lab.

Using RAPL model (Native Linux)

Running Average Power Limit (RAPL) is one of the energy modeling techniques that can be used in
some supported CPUs platforms. Intel introduced RAPL first in the Intel Sandy Bridge architecture
and it continues in successive generation architectures like the Haswell and Ivy Bridge. There is a
set of hardware counters that can be accessed, known as Model-Specific Registers (MSRs).

There are two benefits of using the RAPL model: it can be used to profile the real-time power
consumption or to control it by passing the corresponding parameters. In general, there are multiple
benefits of using the RAPL; hardware counters are updated without software intervention. Also,
these registers are updated automatically. However, these registers are just 32-bit length so it is
possible that the registers will overflow after a certain amount of time after starting the machine.

Using Hardware Monitor Pro (Virtual Machines)
You may download and install the Hardware Monitor Pro from the following link. Please only use the
trial version of the Hardware Monitor Pro for the lab. The Pro version will allow you to log power
consumption over a period of time.

To log power consumption, select Tools>Logs>Start Recording. Once your program has finished,
end the recording with Tools>Logs>Stop Recording. A new window should appear with the current
logs. Navigate from this window to the subfolder containing the logs in graphical form. The package
power graph is what you will need to reference for your power measurements. Additionally, under
Tools>Options you can also save a corresponding csv file that those graphs are based on.

If you are using this method, you will need to log your host machine's power consumption
normally, to act as a baseline when you log power consumption during program execution.

Using Activity Monitor (for MACs)
If you are using a MAC, you make use of the Activity Monitor. You may refer to this link to help get
started. If you are using this method, you will need to record your host machine’s idle power
consumption before running any programs to act as a baseline.

https://www.cpuid.com/downloads/hwmonitor-pro/hwmonitor-pro_1.44.exe#google_vignette
https://support.apple.com/en-ca/guide/activity-monitor/actmntr43697/mac

Assignment V:
Write a function or cite a source for each of the following three sorting algorithms. If you are running
linux natively, you will edit a source file provided (rapl_read.c) at around line 809 to make a call to each
of these functions separately (one at a time).

Quick Sort
Merge Sort
Insertion Sort

You can create a top level function e.g. quick_sort_top_level() that can be called from the location
specified in rapl_read.c if you are running linux natively or from main if you are using the other
methods. Your top level function should accept a long integer n as an argument, generate n integer
elements randomly and call the actual sorting function. The top level function should also call another
function sort_verify() that verifies if the sorting is done correctly (you can iterate through all the items
of the sorted array to see if every i+1th item is greater or equal to ith item). You will also need to
include some means of timing program execution, preferably something similar to the following:

#include <stdio.h>
#include <stdlib.h>

#define TIMER_CLEAR (tv1.tv_sec = tv1.tv_usec = tv2.tv_sec = tv2.tv_usec = 0)
#define TIMER_START gettimeofday(&tv1, (struct timezone*)0)
#define TIMER_ELAPSED (double) (tv2.tv_usec-tv1.tv_usec)/1000000.0+(tv2.tv_sec-tv1.tv_sec)
#define TIMER_STOP gettimeofday(&tv2, (struct timezone*)0)
struct timeval tv1,tv2;

int main(int argc, char* argv[])
{

int i;
TIMER_CLEAR;
TIMER_START;
// Call to function that you want to time
// example
sleep(5); //Timer will give us ~5 seconds
TIMER_STOP;
printf("Time elapsed = %f seconds\n", TIMER_ELAPSED);
return 0;

}

If you are using either the Hardware Monitor Pro or Activity Monitor, you will need this timing to
convert the recorded information from Watts into Joules (Watts X Second). Remember you will also
need to measure a baseline power consumption for your CPU when idle (typically this is package
power if you are using Hardware Monitor). This baseline should be subtracted from the average
power consumed.

You should time your programs to run for around 5 seconds where possible. You will need to set the
number of elements for each of your sorting algorithms. The number of elements may be different for
each algorithm.For some of these algorithms that may require tens of millions of elements. You
cannot allocate arrays of this size on the stack, you must allocate them in the global area or the heap.
Algorithms obtained from the web may incur segmentation faults because of this issue. You may
consider the following:

#include <sdtdio.h>
int arraya[1000000]; /* this is ok it is from global memory */
int main()
{
int arrayb[1000000]; /*this is not ok it is from the stack and will fail with
a segmentation error for large enough arrays */
int *arrayc = malloc(1000000); /* this is ok it is from the heap */
}

For the following sections you will be running your algorithms 5 times and taking the average of their
results to come up with the average energy and time spent per array element. You will include a
sample run’s output for each set of 5 runs. The data may be summarized as follows:

Trial Algorithm

Insertionsort Mergesort Quicksort

Energy Time Energy Time Energy Time

1

2

3

4

5

Average
Energy

Energy per
element

Average
Time

Time per
element

Note that the number of elements will also need to be listed in the report.

Make sure to make proper use of allocating and deleting the elements of the array. [20]

Assignment VI:

Your program should generate at least 1M elements of an array (for insertionsort it may be less, say
around 10000) and run for around 5 seconds. Please use pointer for dynamic array using new/delete
or malloc/free rather than using static array. Compile and run code with each of the algorithms 5 times
and report all of the values of energy consumption in Joules as well as the time taken for each run.
Find the average values of the five runs for both energy consumption and execution time and derive
the average energy consumption and time per element for each algorithm. Please make sure that you
have turned off any compiler optimization (i.e. Please use -O0 flag while compiling) [15]

Assignment VII:

Perform the same set of experiments as in Assignment VI, but with optimization flag -O3. Run
each of the sorting algorithms 5 times and report the average as the final output. [15]

Assignment VIII:

Which algorithm was the best in terms of energy consumption per element? Which algorithm was the
best in terms of time per element? How does this compare to the time complexity of each of the
algorithms? Did the compiler flag make things any better? [12]

Extra Credit Research:

1. Please research and discuss the MSR registers. [10]

Deliverables

Lab Report
The following material in each section is expected:

1. Cover page with your name, lab number, course name, and dates
2. Observations and Answers

a. Please include answers to any questions from the lab document, as well as any
necessary supporting documentation in the order they appear.

3. Conclusion
4. Appendix

a. Source code for programs used in part 2

The report should be submitted as a single pdf document with the source code for your
program within it.

Recorded Demonstration
The following material in each section is expected:

1. Introduce yourself and give the name of the lab
2. Walk through the second part of the lab and discuss your results. You do not need to

describe the sorting algorithms used, but you must show that they work. Programs in
part 2 must be shown to compile and run. Show how you recorded any measurements
for each algorithm at least once and what conclusions you can make about the
efficiency of the algorithms used.

The demonstration may be in person or recorded and submitted as an mp4 file alongside the report.

