
Don’t Rush Ahead in Lab05

• The fuzzing tool can make a mess of your
Linux account if you are not careful

• Follow the instructions provided as written
unless directed otherwise by the instructor

CPE 455/555
Secure Software Development

Lab05 – Fuzzing with AFL

Dr. David J. Coe
Software Safety and Security Engineering Lab

Electrical and Computer Engineering
Department

Sponsored by National Security Agency Grant H98230-17-1-0344

Outline
• Introduction to Fuzzing
• Fuzzing with AFL
– Example #1: Simple Example – Crashy
– Quiz-Lab05
– Example #2: Common Utility – SQLite (Demo)

• Discussion
• Summary
• References

Sponsored by National Security Agency Grant H98230-17-1-0344

Introduction to Fuzzing

Sponsored by National Security Agency Grant H98230-17-1-0344

Introduction to Fuzzing - 1
• What is Fuzzing?
– At its core, Fuzzing is a technique for testing a

program by supplying ‘random’ inputs and seeing if
the program crashes or hangs.

– This is a form of dynamic testing that evaluates a
program’s performance at run-time.

– Because the inputs are often unexpected values,
they can find crashes that are not seen with dynamic
analysis edge cases.

Sponsored by National Security Agency Grant H98230-17-1-0344

Introduction to Fuzzing - 2
• The term “fuzzing” was coined by Professor

Barton Miller at the University of Wisconsin-
Madison.
– It was a project assignment for his CS736 class in

1988.
– The assignment was to create a “Fuzz Generator” to

supply various types of random ASCII inputs to UNIX
utilities and try to break them.
• They broke about 30% of them.

Sponsored by National Security Agency Grant H98230-17-1-0344

Introduction to Fuzzing - 3
• Fuzzing programs can be dumb or intelligent.
• The dumb programs are brute force methods that just

randomly try inputs.
– If the program takes complicated input formats or has a lot of

conditional paths, the random inputs are unlikely to be
formatted well enough to make it very far through the
program’s control flow.

• The intelligent programs supply inputs that are usually
not completely random, but mutated forms of valid input
structures.
– This allows for inputs that reach certain paths to be held

static with other values changed to test out different paths
more thoroughly and discover more paths.
• Refered to as guided fuzzing.

Sponsored by National Security Agency Grant H98230-17-1-0344

Introduction to Fuzzing - 4
– Software developers and testers utilize fuzzing

to improve the quality of products under
development

– Hackers use fuzzing techniques to discover
defects that may prove to be exploitable

Sponsored by National Security Agency Grant H98230-17-1-0344

Fuzzing with AFL

Sponsored by National Security Agency Grant H98230-17-1-0344

Fuzzing with AFL - 0
• The American Fuzzy Lop is a rabbit.

Sponsored by National Security Agency Grant H98230-17-1-0344

https://zepafarm.club/american-fuzzy-lop-rabbit/

Fuzzing with AFL - 1
• The American Fuzzy Lop is a rabbit.
• AFL, named for the rabbit, is an open-source fuzzer

that can make use of instrumentation inserted into
the compiled code for the unit under test to keep
track of paths found.

• It also uses genetic algorithms to trim the test cases
to the smallest size possible.
– The developer also cautions against supplying extra

inputs where one with the proper format will suffice.
• e.g. an image processing program only needs one picture of

each type it accepts as input for the fuzzer to learn the format.

Sponsored by National Security Agency Grant H98230-17-1-0344

Fuzzing with AFL - 2
• The developer describes AFL’s overall process as

follows:
– Load user test cases into a queue
– Take next file from the queue
– Try to trim the test case so that it doesn’t alter the

measured behavior of the program
– Mutate the file using a variety of strategies
– If a new path is found, add that mutated input as a new

entry in the queue
– Repeat

Sponsored by National Security Agency Grant H98230-17-1-0344

Fuzzing with AFL - 3
• The latest version of AFL is available from the

developer’s web site and can be obtained by using
the command:
– wget http://lcamtuf.coredump.cx/afl/releases/afl-

latest.tgz
• Then you can extract and build it with the supplied

makefile
• NOTE: For Lab05, the AFL tool is already installed

on the ENG 246 Linux lab machines which are
remotely accessible

Sponsored by National Security Agency Grant H98230-17-1-0344

Access to AFL
• SSH to blackhawk.ece.uah.edu
• Then from blackhawk, SSH to an ENG 246 lab

machine
ssh –Y username@172.21.246.X
where 1 <= X <= 35

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #1
Simple Example – Crashy

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #1 - Crashy - 1

• Crashy.c is a sample program that reads and
prints out a custom file format.

Sponsored by National Security Agency Grant H98230-17-1-0344

Crashy Input File Format
• Input file format: Block-Type Value

– 0x01: 32-bit integer
– 0x02: 8-bit character
– 0x03: string (length including null terminator)
– 0x04: comment (null terminated string)

• Terminated with 0xff

Sponsored by National Security Agency Grant H98230-17-1-0344

-bash-4.2$ hexdump -C example1
00000000 01 12 34 56 78 02 cc 03 06 00 00 00 68 65 6c 6c |..4Vx.......hell|
00000010 6f 00 ff |o..|
00000013
-bash-4.2$
-bash-4.2$./crashy example1
i: 0x78563412
c: 0xcc
s: hello
-bash-4.2$

Example #1 Crashy - 2

Sponsored by National Security Agency Grant H98230-17-1-0344

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char *argv[]) {

FILE *fp;
unsigned int sz, len, ptr;
char *buffer;
char type;
char tmp_char;
int tmp_int;
char *tmp_string;
if(argc != 2) {

fprintf(stderr, "Usage: %s <inputfile>\n",
argv[0]);

return 1;
}
fp = fopen(argv[1], "r");
if(!fp) {

fprintf(stderr, "Failed to open '%s'\n", argv[1]);
return 1;

}
fseek(fp, 0, SEEK_END);
sz = ftell(fp);
fseek(fp, 0, SEEK_SET);
buffer = malloc(sz);
if(!buffer) {

fprintf(stderr, "Failed to allocate %d bytes of
memory\n", sz);

return 1;
}
fread(buffer, sizeof(char), sz, fp);
ptr = 0;

while(ptr < sz) {
type = buffer[ptr++];
switch(type) {

case '\x01': // integer
tmp_int = *(int *)(buffer + ptr);
ptr += sizeof(int);
printf("i: 0x%08x\n", tmp_int);
break;

case '\x02': // char
tmp_char = buffer[ptr++];
printf("c: 0x%02x\n", (unsigned char)tmp_char);
break;

case '\x03': // string
len = *(int *)(buffer + ptr);
ptr += sizeof(int);
tmp_string = malloc(len);
if(!tmp_string) {

fprintf(stderr, "Failed to allocate
%d bytes of memory\n", len);

return 1;
}
strcpy(tmp_string, (buffer + ptr));
printf("s: %s\n", tmp_string);
ptr += len;
break;

case '\x04': // comment
printf("#: %s\n", (buffer + ptr));
while(*(buffer + ptr++) != '\x00');
break;

case '\xff': // END
return 0;

default:
fprintf(stderr, "Unknown data type '%c'\n", type);

}
}

}

AFL Compilation
-bash-4.2$ cat Makefile
CC := afl-gcc
CFLAGS := -Wno-unused-result

all: crashy.c
$(CC) $(CFLAGS) -o crashy crashy.c

clean:
rm crashy

-bash-4.2$
-bash-4.2$ make
afl-gcc -Wno-unused-result -o crashy crashy.c
afl-cc 2.52b by <lcamtuf@google.com>
afl-as 2.52b by <lcamtuf@google.com>
[+] Instrumented 23 locations (32-bit, non-hardened mode,
ratio 100%).
-bash-4.2$

Sponsored by National Security Agency Grant H98230-17-1-0344

AFL Input File Analysis
• Input file format: Block-Type Value

– 0x01: 32-bit integer
– 0x02: 8-bit character
– 0x03: string (length including null terminator)
– 0x04: comment (null terminated string)

• Terminated with 0xff

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #1 - Crashy - 3

• Given the source code and a few example input
files, we can fuzz the program using AFL.

• First, we extract the compressed crashy files
from the supplied zip file.

unzip crashy.zip

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #1 - Crashy - 4

• Then, we use AFL’s modified version of gcc to
compile the code with the instrumentation it needs
for intelligent fuzzing.

• NOTE: The provided Makefile has already been altered,
replacing gcc with afl-gcc so there is no need to supply
make with command line arguments as shown above

• To compile, type
make

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #1 - Crashy - 5

• Before we can start the fuzzer, we need to set up
the directory structure so that we have an input
directory with the example files and an empty
output directory to hold the findings and
progress information AFL uses.

– We just made subdirectories in the crashy/ folder
called inputFiles and outputResults.

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #1 - Crashy - 6

• Finally, we can start AFL while in the directory with
crashy’s executable with the command:

afl-fuzz -i inputFiles -o outputResults ./crashy @@
• The -i flag tells AFL where to find input examples

and the -o flag is where the results will be placed.
– If the process is interrupted, you can continue by passing

a dash as the input directory (-i -) and using the same
output directory.

• The @@ is a placeholder for a filename which AFL
will supply from the input examples it finds.

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #1 - Crashy - 7

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #1 - Crashy - 8

• After it starts, AFL will continue until you use
ctrl-c.

Sponsored by National Security Agency Grant H98230-17-1-0344

• Crashy after 1 hour and 228 cycles had found 9 unique crashes.

Example #1 - Crashy - 9

• 14 hours later there were no additional unique
crashes.

Sponsored by National Security Agency Grant H98230-17-1-0344

• Note it had only been half that time since the last new path was
found.

Quiz-Lab05
• Continue running AFL on the crashy program

until you see unique crashes identified

• With AFL displaying in RED that unique crashes
have been identified, TAKE A SCREENSHOT for
submission to the Quiz-Lab05

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #1 - Crashy - 10

• Now we review the findings by looking in the
output directory.

• The inputs that caused crashes are in the
crashes/ folder and are named accordingly.

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #1 - Crashy - 11

• We can then confirm that input example will
cause a crash by running it directly.

• Then debugging can begin using these samples
to find the root cause and hopefully correct it.

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #2
Common Utility - SQLite

Sponsored by National Security Agency Grant H98230-17-1-0344

Example #2 – SQLite - 1

• The previous example was designed to have
faults and to be simple enough for the fuzzer to
evaluate quickly

• This example will take a more popular utility,
SQLite, and show how the fuzzer can be used to
test it as well

• To save time, the instructor will demonstrate
parallel fuzz testing of sqlite

Sponsored by National Security Agency Grant H98230-17-1-0344

Discussion
• Once you have sample input files that cause

crashes and/or hangs, you may use gdb to
determine (1) the nature of the defects and (2) if
the defects are exploitable

• The random nature of fuzzing makes it necessary
to use other code analysis tools to ensure
complete code coverage.

• Still, fuzzing is a good addition to a tester’s toolkit
because the unexpected semi-valid inputs can
help find bugs that would have been otherwise
missed.

Sponsored by National Security Agency Grant H98230-17-1-0344

Summary
• Fuzzing
– A software testing method that alters inputs to a

program in order to see how it performs with
unexpected, invalid, and random input.

• AFL
– A good open-source input file fuzzer that

instruments code to enable guided fuzzing for
better results.

Sponsored by National Security Agency Grant H98230-17-1-0344

References

• Fuzz Testing of Application Reliability
http://pages.cs.wisc.edu/~bart/fuzz/

• American Fuzzy Lop (2.52b)
http://lcamtuf.coredump.cx/afl/

• Crashy - Fuzzing Toy Program Example
https://?????

• SQLite - version 3.7.17
https://www.sqlite.org/2013/sqlite-autoconf-3071700.tar.gz

Sponsored by National Security Agency Grant H98230-17-1-0344

