1
0
UAHCode/CPE455/lab08/mode-s.c
2022-08-28 16:12:16 -05:00

741 lines
26 KiB
C

#include "mode-s.h"
#define MODE_S_PREAMBLE_US 8 // microseconds
#define MODE_S_LONG_MSG_BITS 112
#define MODE_S_SHORT_MSG_BITS 56
#define MODE_S_FULL_LEN (MODE_S_PREAMBLE_US+MODE_S_LONG_MSG_BITS)
#define MODE_S_ICAO_CACHE_TTL 60 // Time to live of cached addresses.
static uint16_t maglut[129*129*2];
static int maglut_initialized = 0;
// =============================== Initialization ===========================
void mode_s_init(mode_s_t *self) {
int i, q;
self->fix_errors = 1;
self->check_crc = 1;
self->aggressive = 0;
// Allocate the ICAO address cache. We use two uint32_t for every entry
// because it's a addr / timestamp pair for every entry
memset(&self->icao_cache, 0, sizeof(self->icao_cache));
// Populate the I/Q -> Magnitude lookup table. It is used because sqrt or
// round may be expensive and may vary a lot depending on the libc used.
//
// We scale to 0-255 range multiplying by 1.4 in order to ensure that every
// different I/Q pair will result in a different magnitude value, not losing
// any resolution.
if (!maglut_initialized) {
for (i = 0; i <= 128; i++) {
for (q = 0; q <= 128; q++) {
maglut[i*129+q] = round(sqrt(i*i+q*q)*360);
}
}
maglut_initialized = 1;
}
}
// ===================== Mode S detection and decoding =====================
// Parity table for MODE S Messages.
//
// The table contains 112 elements, every element corresponds to a bit set in
// the message, starting from the first bit of actual data after the preamble.
//
// For messages of 112 bit, the whole table is used. For messages of 56 bits
// only the last 56 elements are used.
//
// The algorithm is as simple as xoring all the elements in this table for
// which the corresponding bit on the message is set to 1.
//
// The latest 24 elements in this table are set to 0 as the checksum at the end
// of the message should not affect the computation.
//
// Note: this function can be used with DF11 and DF17, other modes have the CRC
// xored with the sender address as they are reply to interrogations, but a
// casual listener can't split the address from the checksum.
uint32_t mode_s_checksum_table[] = {
0x3935ea, 0x1c9af5, 0xf1b77e, 0x78dbbf, 0xc397db, 0x9e31e9, 0xb0e2f0, 0x587178,
0x2c38bc, 0x161c5e, 0x0b0e2f, 0xfa7d13, 0x82c48d, 0xbe9842, 0x5f4c21, 0xd05c14,
0x682e0a, 0x341705, 0xe5f186, 0x72f8c3, 0xc68665, 0x9cb936, 0x4e5c9b, 0xd8d449,
0x939020, 0x49c810, 0x24e408, 0x127204, 0x093902, 0x049c81, 0xfdb444, 0x7eda22,
0x3f6d11, 0xe04c8c, 0x702646, 0x381323, 0xe3f395, 0x8e03ce, 0x4701e7, 0xdc7af7,
0x91c77f, 0xb719bb, 0xa476d9, 0xadc168, 0x56e0b4, 0x2b705a, 0x15b82d, 0xf52612,
0x7a9309, 0xc2b380, 0x6159c0, 0x30ace0, 0x185670, 0x0c2b38, 0x06159c, 0x030ace,
0x018567, 0xff38b7, 0x80665f, 0xbfc92b, 0xa01e91, 0xaff54c, 0x57faa6, 0x2bfd53,
0xea04ad, 0x8af852, 0x457c29, 0xdd4410, 0x6ea208, 0x375104, 0x1ba882, 0x0dd441,
0xf91024, 0x7c8812, 0x3e4409, 0xe0d800, 0x706c00, 0x383600, 0x1c1b00, 0x0e0d80,
0x0706c0, 0x038360, 0x01c1b0, 0x00e0d8, 0x00706c, 0x003836, 0x001c1b, 0xfff409,
0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000,
0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000,
0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000
};
uint32_t mode_s_checksum(unsigned char *msg, int bits) {
uint32_t crc = 0;
int offset = (bits == 112) ? 0 : (112-56);
int j;
for(j = 0; j < bits; j++) {
int byte = j/8;
int bit = j%8;
int bitmask = 1 << (7-bit);
// If bit is set, xor with corresponding table entry.
if (msg[byte] & bitmask)
crc ^= mode_s_checksum_table[j+offset];
}
return crc; // 24 bit checksum.
}
// Given the Downlink Format (DF) of the message, return the message length in
// bits.
int mode_s_msg_len_by_type(int type) {
if (type == 16 || type == 17 ||
type == 19 || type == 20 ||
type == 21)
return MODE_S_LONG_MSG_BITS;
else
return MODE_S_SHORT_MSG_BITS;
}
// Try to fix single bit errors using the checksum. On success modifies the
// original buffer with the fixed version, and returns the position of the
// error bit. Otherwise if fixing failed -1 is returned.
int fix_single_bit_errors(unsigned char *msg, int bits) {
int j;
unsigned char aux[MODE_S_LONG_MSG_BITS/8];
for (j = 0; j < bits; j++) {
int byte = j/8;
int bitmask = 1 << (7-(j%8));
uint32_t crc1, crc2;
memcpy(aux, msg, bits/8);
aux[byte] ^= bitmask; // Flip j-th bit.
crc1 = ((uint32_t)aux[(bits/8)-3] << 16) |
((uint32_t)aux[(bits/8)-2] << 8) |
(uint32_t)aux[(bits/8)-1];
crc2 = mode_s_checksum(aux, bits);
if (crc1 == crc2) {
// The error is fixed. Overwrite the original buffer with the
// corrected sequence, and returns the error bit position.
memcpy(msg, aux, bits/8);
return j;
}
}
return -1;
}
// Similar to fix_single_bit_errors() but try every possible two bit
// combination. This is very slow and should be tried only against DF17
// messages that don't pass the checksum, and only in Aggressive Mode.
int fix_two_bits_errors(unsigned char *msg, int bits) {
int j, i;
unsigned char aux[MODE_S_LONG_MSG_BITS/8];
for (j = 0; j < bits; j++) {
int byte1 = j/8;
int bitmask1 = 1 << (7-(j%8));
// Don't check the same pairs multiple times, so i starts from j+1
for (i = j+1; i < bits; i++) {
int byte2 = i/8;
int bitmask2 = 1 << (7-(i%8));
uint32_t crc1, crc2;
memcpy(aux, msg, bits/8);
aux[byte1] ^= bitmask1; // Flip j-th bit.
aux[byte2] ^= bitmask2; // Flip i-th bit.
crc1 = ((uint32_t)aux[(bits/8)-3] << 16) |
((uint32_t)aux[(bits/8)-2] << 8) |
(uint32_t)aux[(bits/8)-1];
crc2 = mode_s_checksum(aux, bits);
if (crc1 == crc2) {
// The error is fixed. Overwrite the original buffer with the
// corrected sequence, and returns the error bit position.
memcpy(msg, aux, bits/8);
// We return the two bits as a 16 bit integer by shifting 'i'
// on the left. This is possible since 'i' will always be
// non-zero because i starts from j+1.
return j | (i<<8);
}
}
}
return -1;
}
// Hash the ICAO address to index our cache of MODE_S_ICAO_CACHE_LEN elements,
// that is assumed to be a power of two.
uint32_t icao_cache_has_addr(uint32_t a) {
// The following three rounds wil make sure that every bit affects every
// output bit with ~ 50% of probability.
a = ((a >> 16) ^ a) * 0x45d9f3b;
a = ((a >> 16) ^ a) * 0x45d9f3b;
a = ((a >> 16) ^ a);
return a & (MODE_S_ICAO_CACHE_LEN-1);
}
// Add the specified entry to the cache of recently seen ICAO addresses. Note
// that we also add a timestamp so that we can make sure that the entry is only
// valid for MODE_S_ICAO_CACHE_TTL seconds.
void add_recently_seen_icao_addr(mode_s_t *self, uint32_t addr) {
uint32_t h = icao_cache_has_addr(addr);
self->icao_cache[h*2] = addr;
self->icao_cache[h*2+1] = (uint32_t) time(NULL);
}
// Returns 1 if the specified ICAO address was seen in a DF format with proper
// checksum (not xored with address) no more than * MODE_S_ICAO_CACHE_TTL
// seconds ago. Otherwise returns 0.
int icao_addr_was_recently_seen(mode_s_t *self, uint32_t addr) {
uint32_t h = icao_cache_has_addr(addr);
uint32_t a = self->icao_cache[h*2];
int32_t t = self->icao_cache[h*2+1];
return a && a == addr && time(NULL)-t <= MODE_S_ICAO_CACHE_TTL;
}
// If the message type has the checksum xored with the ICAO address, try to
// brute force it using a list of recently seen ICAO addresses.
//
// Do this in a brute-force fashion by xoring the predicted CRC with the
// address XOR checksum field in the message. This will recover the address: if
// we found it in our cache, we can assume the message is ok.
//
// This function expects mm->msgtype and mm->msgbits to be correctly populated
// by the caller.
//
// On success the correct ICAO address is stored in the mode_s_msg structure in
// the aa3, aa2, and aa1 fiedls.
//
// If the function successfully recovers a message with a correct checksum it
// returns 1. Otherwise 0 is returned.
int brute_force_ap(mode_s_t *self, unsigned char *msg, struct mode_s_msg *mm) {
unsigned char aux[MODE_S_LONG_MSG_BYTES];
int msgtype = mm->msgtype;
int msgbits = mm->msgbits;
if (msgtype == 0 || // Short air surveillance
msgtype == 4 || // Surveillance, altitude reply
msgtype == 5 || // Surveillance, identity reply
msgtype == 16 || // Long Air-Air survillance
msgtype == 20 || // Comm-A, altitude request
msgtype == 21 || // Comm-A, identity request
msgtype == 24) // Comm-C ELM
{
uint32_t addr;
uint32_t crc;
int lastbyte = (msgbits/8)-1;
// Work on a copy.
memcpy(aux, msg, msgbits/8);
// Compute the CRC of the message and XOR it with the AP field so that
// we recover the address, because:
//
// (ADDR xor CRC) xor CRC = ADDR.
crc = mode_s_checksum(aux, msgbits);
aux[lastbyte] ^= crc & 0xff;
aux[lastbyte-1] ^= (crc >> 8) & 0xff;
aux[lastbyte-2] ^= (crc >> 16) & 0xff;
// If the obtained address exists in our cache we consider the message
// valid.
addr = aux[lastbyte] | (aux[lastbyte-1] << 8) | (aux[lastbyte-2] << 16);
if (icao_addr_was_recently_seen(self, addr)) {
mm->aa1 = aux[lastbyte-2];
mm->aa2 = aux[lastbyte-1];
mm->aa3 = aux[lastbyte];
return 1;
}
}
return 0;
}
// Decode the 13 bit AC altitude field (in DF 20 and others). Returns the
// altitude, and set 'unit' to either MODE_S_UNIT_METERS or MDOES_UNIT_FEETS.
int decode_ac13_field(unsigned char *msg, int *unit) {
int m_bit = msg[3] & (1<<6);
int q_bit = msg[3] & (1<<4);
if (!m_bit) {
*unit = MODE_S_UNIT_FEET;
if (q_bit) {
// N is the 11 bit integer resulting from the removal of bit Q and M
int n = ((msg[2]&31)<<6) |
((msg[3]&0x80)>>2) |
((msg[3]&0x20)>>1) |
(msg[3]&15);
// The final altitude is due to the resulting number multiplied by
// 25, minus 1000.
return n*25-1000;
} else {
// TODO: Implement altitude where Q=0 and M=0
}
} else {
*unit = MODE_S_UNIT_METERS;
// TODO: Implement altitude when meter unit is selected.
}
return 0;
}
// Decode the 12 bit AC altitude field (in DF 17 and others). Returns the
// altitude or 0 if it can't be decoded.
int decode_ac12_field(unsigned char *msg, int *unit) {
int q_bit = msg[5] & 1;
if (q_bit) {
// N is the 11 bit integer resulting from the removal of bit Q
*unit = MODE_S_UNIT_FEET;
int n = ((msg[5]>>1)<<4) | ((msg[6]&0xF0) >> 4);
// The final altitude is due to the resulting number multiplied by 25,
// minus 1000.
return n*25-1000;
} else {
return 0;
}
}
static const char *ais_charset = "?ABCDEFGHIJKLMNOPQRSTUVWXYZ????? ???????????????0123456789??????";
// Decode a raw Mode S message demodulated as a stream of bytes by
// mode_s_detect(), and split it into fields populating a mode_s_msg structure.
void mode_s_decode(mode_s_t *self, struct mode_s_msg *mm, unsigned char *msg) {
uint32_t crc2; // Computed CRC, used to verify the message CRC.
// Work on our local copy
memcpy(mm->msg, msg, MODE_S_LONG_MSG_BYTES);
msg = mm->msg;
// Get the message type ASAP as other operations depend on this
mm->msgtype = msg[0]>>3; // Downlink Format
mm->msgbits = mode_s_msg_len_by_type(mm->msgtype);
// CRC is always the last three bytes.
mm->crc = ((uint32_t)msg[(mm->msgbits/8)-3] << 16) |
((uint32_t)msg[(mm->msgbits/8)-2] << 8) |
(uint32_t)msg[(mm->msgbits/8)-1];
crc2 = mode_s_checksum(msg, mm->msgbits);
// Check CRC and fix single bit errors using the CRC when possible (DF 11 and 17).
mm->errorbit = -1; // No error
mm->crcok = (mm->crc == crc2);
if (!mm->crcok && self->fix_errors && (mm->msgtype == 11 || mm->msgtype == 17)) {
if ((mm->errorbit = fix_single_bit_errors(msg, mm->msgbits)) != -1) {
mm->crc = mode_s_checksum(msg, mm->msgbits);
mm->crcok = 1;
} else if (self->aggressive && mm->msgtype == 17 &&
(mm->errorbit = fix_two_bits_errors(msg, mm->msgbits)) != -1) {
mm->crc = mode_s_checksum(msg, mm->msgbits);
mm->crcok = 1;
}
}
// Note that most of the other computation happens *after* we fix the
// single bit errors, otherwise we would need to recompute the fields
// again.
mm->ca = msg[0] & 7; // Responder capabilities.
// ICAO address
mm->aa1 = msg[1];
mm->aa2 = msg[2];
mm->aa3 = msg[3];
// DF 17 type (assuming this is a DF17, otherwise not used)
mm->metype = msg[4] >> 3; // Extended squitter message type.
mm->mesub = msg[4] & 7; // Extended squitter message subtype.
// Fields for DF4,5,20,21
mm->fs = msg[0] & 7; // Flight status for DF4,5,20,21
mm->dr = msg[1] >> 3 & 31; // Request extraction of downlink request.
mm->um = ((msg[1] & 7)<<3)| // Request extraction of downlink request.
msg[2]>>5;
// In the squawk (identity) field bits are interleaved like that (message
// bit 20 to bit 32):
//
// C1-A1-C2-A2-C4-A4-ZERO-B1-D1-B2-D2-B4-D4
//
// So every group of three bits A, B, C, D represent an integer from 0 to
// 7.
//
// The actual meaning is just 4 octal numbers, but we convert it into a
// base ten number tha happens to represent the four octal numbers.
//
// For more info: http://en.wikipedia.org/wiki/Gillham_code
{
int a, b, c, d;
a = ((msg[3] & 0x80) >> 5) |
((msg[2] & 0x02) >> 0) |
((msg[2] & 0x08) >> 3);
b = ((msg[3] & 0x02) << 1) |
((msg[3] & 0x08) >> 2) |
((msg[3] & 0x20) >> 5);
c = ((msg[2] & 0x01) << 2) |
((msg[2] & 0x04) >> 1) |
((msg[2] & 0x10) >> 4);
d = ((msg[3] & 0x01) << 2) |
((msg[3] & 0x04) >> 1) |
((msg[3] & 0x10) >> 4);
mm->identity = a*1000 + b*100 + c*10 + d;
}
// DF 11 & 17: try to populate our ICAO addresses whitelist. DFs with an AP
// field (xored addr and crc), try to decode it.
if (mm->msgtype != 11 && mm->msgtype != 17) {
// Check if we can check the checksum for the Downlink Formats where
// the checksum is xored with the aircraft ICAO address. We try to
// brute force it using a list of recently seen aircraft addresses.
if (brute_force_ap(self, msg, mm)) {
// We recovered the message, mark the checksum as valid.
mm->crcok = 1;
} else {
mm->crcok = 0;
}
} else {
// If this is DF 11 or DF 17 and the checksum was ok, we can add this
// address to the list of recently seen addresses.
if (mm->crcok && mm->errorbit == -1) {
uint32_t addr = (mm->aa1 << 16) | (mm->aa2 << 8) | mm->aa3;
add_recently_seen_icao_addr(self, addr);
}
}
// Decode 13 bit altitude for DF0, DF4, DF16, DF20
if (mm->msgtype == 0 || mm->msgtype == 4 ||
mm->msgtype == 16 || mm->msgtype == 20) {
mm->altitude = decode_ac13_field(msg, &mm->unit);
}
// Decode extended squitter specific stuff.
if (mm->msgtype == 17) {
// Decode the extended squitter message.
if (mm->metype >= 1 && mm->metype <= 4) {
// Aircraft Identification and Category
mm->aircraft_type = mm->metype-1;
mm->flight[0] = (ais_charset)[msg[5]>>2];
mm->flight[1] = ais_charset[((msg[5]&3)<<4)|(msg[6]>>4)];
mm->flight[2] = ais_charset[((msg[6]&15)<<2)|(msg[7]>>6)];
mm->flight[3] = ais_charset[msg[7]&63];
mm->flight[4] = ais_charset[msg[8]>>2];
mm->flight[5] = ais_charset[((msg[8]&3)<<4)|(msg[9]>>4)];
mm->flight[6] = ais_charset[((msg[9]&15)<<2)|(msg[10]>>6)];
mm->flight[7] = ais_charset[msg[10]&63];
mm->flight[8] = '\0';
} else if (mm->metype >= 9 && mm->metype <= 18) {
// Airborne position Message
mm->fflag = msg[6] & (1<<2);
mm->tflag = msg[6] & (1<<3);
mm->altitude = decode_ac12_field(msg, &mm->unit);
mm->raw_latitude = ((msg[6] & 3) << 15) |
(msg[7] << 7) |
(msg[8] >> 1);
mm->raw_longitude = ((msg[8]&1) << 16) |
(msg[9] << 8) |
msg[10];
} else if (mm->metype == 19 && mm->mesub >= 1 && mm->mesub <= 4) {
// Airborne Velocity Message
if (mm->mesub == 1 || mm->mesub == 2) {
mm->ew_dir = (msg[5]&4) >> 2;
mm->ew_velocity = ((msg[5]&3) << 8) | msg[6];
mm->ns_dir = (msg[7]&0x80) >> 7;
mm->ns_velocity = ((msg[7]&0x7f) << 3) | ((msg[8]&0xe0) >> 5);
mm->vert_rate_source = (msg[8]&0x10) >> 4;
mm->vert_rate_sign = (msg[8]&0x8) >> 3;
mm->vert_rate = ((msg[8]&7) << 6) | ((msg[9]&0xfc) >> 2);
// Compute velocity and angle from the two speed components
mm->velocity = sqrt(mm->ns_velocity*mm->ns_velocity+
mm->ew_velocity*mm->ew_velocity);
if (mm->velocity) {
int ewv = mm->ew_velocity;
int nsv = mm->ns_velocity;
double heading;
if (mm->ew_dir) ewv *= -1;
if (mm->ns_dir) nsv *= -1;
heading = atan2(ewv, nsv);
// Convert to degrees.
mm->heading = heading * 360 / (M_PI*2);
// We don't want negative values but a 0-360 scale.
if (mm->heading < 0) mm->heading += 360;
} else {
mm->heading = 0;
}
} else if (mm->mesub == 3 || mm->mesub == 4) {
mm->heading_is_valid = msg[5] & (1<<2);
mm->heading = (360.0/128) * (((msg[5] & 3) << 5) |
(msg[6] >> 3));
}
}
}
mm->phase_corrected = 0; // Set to 1 by the caller if needed.
}
// Turn I/Q samples pointed by `data` into the magnitude vector pointed by `mag`
void mode_s_compute_magnitude_vector(unsigned char *data, uint16_t *mag, uint32_t size) {
uint32_t j;
// Compute the magnitude vector. It's just SQRT(I^2 + Q^2), but we rescale
// to the 0-255 range to exploit the full resolution.
for (j = 0; j < size; j += 2) {
int i = data[j]-127;
int q = data[j+1]-127;
if (i < 0) i = -i;
if (q < 0) q = -q;
mag[j/2] = maglut[i*129+q];
}
}
// Return -1 if the message is out of fase left-side
// Return 1 if the message is out of fase right-size
// Return 0 if the message is not particularly out of phase.
//
// Note: this function will access mag[-1], so the caller should make sure to
// call it only if we are not at the start of the current buffer.
int detect_out_of_phase(uint16_t *mag) {
if (mag[3] > mag[2]/3) return 1;
if (mag[10] > mag[9]/3) return 1;
if (mag[6] > mag[7]/3) return -1;
if (mag[-1] > mag[1]/3) return -1;
return 0;
}
// This function does not really correct the phase of the message, it just
// applies a transformation to the first sample representing a given bit:
//
// If the previous bit was one, we amplify it a bit.
// If the previous bit was zero, we decrease it a bit.
//
// This simple transformation makes the message a bit more likely to be
// correctly decoded for out of phase messages:
//
// When messages are out of phase there is more uncertainty in sequences of the
// same bit multiple times, since 11111 will be transmitted as continuously
// altering magnitude (high, low, high, low...)
//
// However because the message is out of phase some part of the high is mixed
// in the low part, so that it is hard to distinguish if it is a zero or a one.
//
// However when the message is out of phase passing from 0 to 1 or from 1 to 0
// happens in a very recognizable way, for instance in the 0 -> 1 transition,
// magnitude goes low, high, high, low, and one of of the two middle samples
// the high will be *very* high as part of the previous or next high signal
// will be mixed there.
//
// Applying our simple transformation we make more likely if the current bit is
// a zero, to detect another zero. Symmetrically if it is a one it will be more
// likely to detect a one because of the transformation. In this way similar
// levels will be interpreted more likely in the correct way.
void apply_phase_correction(uint16_t *mag) {
int j;
mag += 16; // Skip preamble.
for (j = 0; j < (MODE_S_LONG_MSG_BITS-1)*2; j += 2) {
if (mag[j] > mag[j+1]) {
// One
mag[j+2] = (mag[j+2] * 5) / 4;
} else {
// Zero
mag[j+2] = (mag[j+2] * 4) / 5;
}
}
}
// Detect a Mode S messages inside the magnitude buffer pointed by 'mag' and of
// size 'maglen' bytes. Every detected Mode S message is convert it into a
// stream of bits and passed to the function to display it.
void mode_s_detect(mode_s_t *self, uint16_t *mag, uint32_t maglen, mode_s_callback_t cb) {
unsigned char bits[MODE_S_LONG_MSG_BITS];
unsigned char msg[MODE_S_LONG_MSG_BITS/2];
uint16_t aux[MODE_S_LONG_MSG_BITS*2];
uint32_t j;
int use_correction = 0;
// The Mode S preamble is made of impulses of 0.5 microseconds at the
// following time offsets:
//
// 0 - 0.5 usec: first impulse.
// 1.0 - 1.5 usec: second impulse.
// 3.5 - 4 usec: third impulse.
// 4.5 - 5 usec: last impulse.
//
// Since we are sampling at 2 Mhz every sample in our magnitude vector is
// 0.5 usec, so the preamble will look like this, assuming there is an
// impulse at offset 0 in the array:
//
// 0 -----------------
// 1 -
// 2 ------------------
// 3 --
// 4 -
// 5 --
// 6 -
// 7 ------------------
// 8 --
// 9 -------------------
for (j = 0; j < maglen - MODE_S_FULL_LEN*2; j++) {
int low, high, delta, i, errors;
int good_message = 0;
if (use_correction) goto good_preamble; // We already checked it.
// First check of relations between the first 10 samples representing a
// valid preamble. We don't even investigate further if this simple
// test is not passed.
if (!(mag[j] > mag[j+1] &&
mag[j+1] < mag[j+2] &&
mag[j+2] > mag[j+3] &&
mag[j+3] < mag[j] &&
mag[j+4] < mag[j] &&
mag[j+5] < mag[j] &&
mag[j+6] < mag[j] &&
mag[j+7] > mag[j+8] &&
mag[j+8] < mag[j+9] &&
mag[j+9] > mag[j+6]))
{
continue;
}
// The samples between the two spikes must be < than the average of the
// high spikes level. We don't test bits too near to the high levels as
// signals can be out of phase so part of the energy can be in the near
// samples.
high = (mag[j]+mag[j+2]+mag[j+7]+mag[j+9])/6;
if (mag[j+4] >= high ||
mag[j+5] >= high)
{
continue;
}
// Similarly samples in the range 11-14 must be low, as it is the space
// between the preamble and real data. Again we don't test bits too
// near to high levels, see above.
if (mag[j+11] >= high ||
mag[j+12] >= high ||
mag[j+13] >= high ||
mag[j+14] >= high)
{
continue;
}
good_preamble:
// If the previous attempt with this message failed, retry using
// magnitude correction.
if (use_correction) {
memcpy(aux, mag+j+MODE_S_PREAMBLE_US*2, sizeof(aux));
if (j && detect_out_of_phase(mag+j)) {
apply_phase_correction(mag+j);
}
// TODO ... apply other kind of corrections.
}
// Decode all the next 112 bits, regardless of the actual message size.
// We'll check the actual message type later.
errors = 0;
for (i = 0; i < MODE_S_LONG_MSG_BITS*2; i += 2) {
low = mag[j+i+MODE_S_PREAMBLE_US*2];
high = mag[j+i+MODE_S_PREAMBLE_US*2+1];
delta = low-high;
if (delta < 0) delta = -delta;
if (i > 0 && delta < 256) {
bits[i/2] = bits[i/2-1];
} else if (low == high) {
// Checking if two adiacent samples have the same magnitude is
// an effective way to detect if it's just random noise that
// was detected as a valid preamble.
bits[i/2] = 2; // error
if (i < MODE_S_SHORT_MSG_BITS*2) errors++;
} else if (low > high) {
bits[i/2] = 1;
} else {
// (low < high) for exclusion
bits[i/2] = 0;
}
}
// Restore the original message if we used magnitude correction.
if (use_correction)
memcpy(mag+j+MODE_S_PREAMBLE_US*2, aux, sizeof(aux));
// Pack bits into bytes
for (i = 0; i < MODE_S_LONG_MSG_BITS; i += 8) {
msg[i/8] =
bits[i]<<7 |
bits[i+1]<<6 |
bits[i+2]<<5 |
bits[i+3]<<4 |
bits[i+4]<<3 |
bits[i+5]<<2 |
bits[i+6]<<1 |
bits[i+7];
}
int msgtype = msg[0]>>3;
int msglen = mode_s_msg_len_by_type(msgtype)/8;
// Last check, high and low bits are different enough in magnitude to
// mark this as real message and not just noise?
delta = 0;
for (i = 0; i < msglen*8*2; i += 2) {
delta += abs(mag[j+i+MODE_S_PREAMBLE_US*2]-
mag[j+i+MODE_S_PREAMBLE_US*2+1]);
}
delta /= msglen*4;
// Filter for an average delta of three is small enough to let almost
// every kind of message to pass, but high enough to filter some random
// noise.
if (delta < 10*255) {
use_correction = 0;
continue;
}
// If we reached this point, and error is zero, we are very likely with
// a Mode S message in our hands, but it may still be broken and CRC
// may not be correct. This is handled by the next layer.
if (errors == 0 || (self->aggressive && errors < 3)) {
struct mode_s_msg mm;
// Decode the received message
mode_s_decode(self, &mm, msg);
// Skip this message if we are sure it's fine.
if (mm.crcok) {
j += (MODE_S_PREAMBLE_US+(msglen*8))*2;
good_message = 1;
if (use_correction)
mm.phase_corrected = 1;
}
// Pass data to the next layer
if (self->check_crc == 0 || mm.crcok) {
cb(self, &mm);
}
}
// Retry with phase correction if possible.
if (!good_message && !use_correction) {
j--;
use_correction = 1;
} else {
use_correction = 0;
}
}
}